Меню Рубрики

Относительная конфигурация молочной кислоты

При рассмотрении пространственного строения веществ с асимметрическими атомами различают их относительную и абсолютную конфигурации. Относительная конфигурация — это взаимное расположение заместителей при разных асимметрических атомах по отношению друг к другу; обычно ее обозначают приставками к основному названию вещества (цис- и транс-, трео- и эритро-, мезо-, алло- и др.). Абсолютная конфигурация — это истинное расположение в пространстве заместителей при каждом асимметрическом атоме молекулы; чаще всего ее обозначают буквами D или L. Например, правовращающая и левовращающая винные кислоты обладают противоположными (антиподными) абсолютными конфигурациями, но одинаковой относительной конфигурацией, отличающейся в то же время от относительной конфигурации мезовинной кислоты

(различные расстояния между группами ОН, СООН и т. д.):

Относительная конфигурация многих веществ может быть выяснена различными химическими и физическими методами. Прямое же определение абсолютной конфигурации, напротив, представляет очень трудную задачу, которую пока удалось решить только на одном примере: в 1951 г. путем рентгеноструктурного анализа калий-рубидиевой соли D(+)-винной кислоты было установлено, что эта кислота обладает абсолютной конфигурацией, изображаемой приведенными выше формулами. Тем не менее одного этого эксперимента достаточно, чтобы решить вопрос об истинном пространственном строении огромного числа оптически деятельных соединений путем корреляции (установления соответствия) их абсолютных конфигураций и сведения этих соединений в стерические ряды.

В качестве стереохимического стандарта еще в 1906 г., по предложению М. А. Розанова, был избран глицериновый альдегид, (+)-форме которого была произвольно приписана формула (I), а (—)-форме — формула (II):

С тех пор абсолютные конфигурации других оптически деятельных соединений рассматривались как соответствующие либо правовращающему, либо левовращающему антиподу глицеринового альдегида, в результате чего возникли два ряда конфигуративно родственных соединений — D-ряд и L-ряд.

При этом корреляция конфигураций различных веществ чаще всего осуществлялась химическим путем. Например, (+)-глицериновый альдегид был окислен в (—)-глицериновую кислоту, которая была получена также из (+)-изосерина при его диазотировании; (+)-изосерин в свою очередь был дезаминирован с образованием (—)-молочной кислоты и получен из (+)-винной кислоты через (—)-хлоряблочную и (+)-яблочную кислоты:

Отсюда следовало, что все эти соединения обладают одинаковой конфигурацией, которая была обозначена как D-конфигурация по основному члену ряда — D(+)-глицериновому альдегиду.

Сравнивая выведенную этим путем проекционную формулу (+)-винной кислоты с установленной на основании рентгеноструктурных данных ее пространственной формулой, можно легко убедиться, что сделанный ранее произвольный выбор проекционной формулы (+)-глицеринового альдегида случайно оказался правильным. Следовательно, абсолютные конфигурации теперь уже не являются условными, а правильно отражают истинное пространственное строение молекул.

При сведении различных веществ на основании их взаимных превращений в один стерический ряд возникает вопрос, остается ли при химических реакциях конфигурация молекулы неизменной? Оказывается, что при всех превращениях, при которых не происходит разрыв связи у асимметрического атома, конфигурация молекулы всегда сохраняется. Например, при ацилировании спиртов, гидроксил которых присоединен к асимметрическому атому углерода, и при омылении образовавшихся сложных эфиров связь между атомом кислорода и асимметрическим углеродным атомом не разрывается, и потому изменения конфигурации не происходит:

Если же замещение происходит непосредственно при асимметрическом центре, то конфигурация молекулы может измениться. Например, из D(+)-α-бромпропионовой кислоты при действии на нее разбавленной щелочи получается D(—)-молочная кислота, а при действии концентрированной щелочи — L(+)-молочная кислота:

Как видно из приведенной схемы, пространственное расположение заместителей у асимметрического атома при взаимодействии с разбавленной щелочью не изменилось, тогда как в результате реакции с концентрированной щелочью молекула приняла конфигурацию, противоположную исходной. Это уже упоминавшееся ранее явление вальденовского обращения, или инверсии конфигурации, встречается весьма часто и имеет очень большое теоретическое значение. Практически оно может быть использовано для получения некоторых ценных соединений из их более доступных стереоизомеров.

Современную теорию вальденовского обращения целесообразно рассмотреть на примере нуклеофильного замещения, т. е реакции, при которой асимметрический центр подвергается атаке аниона или отрицательного конца диполя полярной молекулы. Такое замещение может протекать либо по бимолекулярному (SN2), либо по мономолекулярному (SN1) механизму, но только бимолекулярное замещение всегда приводит к вальденовскому обращению.

При бимолекулярной реакции по мере приближения аниона X – к молекуле I происходит постепенное удаление радикала Z и одновременное отталкивание трех остальных заместителей, так что в переходном состоянии II эти заместители находятся в одной плоскости. Последующее отщепление аниона Z – и образование связи между центральным атомом и новым заместителем X приводит к конфигурации (III), которая являлась бы зеркальным отражением исходной конфигурации (I), если бы X был тождественен Z:

Квантово-механические расчеты показывают, что энергии активации реакции минимальна при атаке входящего заместителя со стороны, противоположной отщепляющемуся заместителю. Поэтому при бимолекулярном нуклеофильном замещении всегда должно происходить вальденовское обращение. Известные до настоящего времени факты подтверждают это положение.

В случае мономолекулярного нуклеофильного замещения первая фаза реакции заключается в диссоциации молекулы (I). Образующийся карбониевый катион (II) принимает плоскую форму (III), и присоединение к нему атакующего аниона X – справа или слева равновероятно. Поэтому в результате реакции получается равное число молекул с противоположными конфигурациями (IV и V), т. е. происходит рацемизация:

Если же стабильность катиона в пирамидальной форме (II) повышена из-за особенностей его электронного строения (наличие соответствующим образом расположенных ионизированных групп, неподеленных электронных пар, π-электронов кратных связей и т. п.), то переход его в плоскую форму (III) может совершаться медленнее, чем присоединение аниона X – , которое в этом случае приводит к конфигурации (V), аналогичной имевшейся в исходной молекуле (I).

Примерами двух типов нуклеофильного замещения являются рассмотренные на стр. 593 реакции гидролиза D(+)-α-бpoмпропионовой кислоты. При действии на это соединение ионов ОН – (в концентрированной щелочи) происходит обмен брома на гидроксил по механизму SN2 с вальденовским обращением При действии же менее нуклеофильного диполя Н—ОН (в разбавленной щелочи) реакция протекает по механизму SN1. Промежуточный катион типа II стабилизуется при этом в пирамидальной форме вследствие внутримолекулярного взаимодействия С + с СОО – , и конфигурация сохраняется.

Возможности достоверно предсказывать механизм реакции замещения у асимметрического центра до сих пор не имеется. Часто при действии близких по характеру реагентов, и даже одного и того же реагента в различных условиях, реакция может протекать с сохранением или обращением конфигурации исходного оптически деятельного соединения. Поэтому при установлении конфигурации какого-либо вещества всегда стремятся превратить его в соединения с уже известным пространственным строением путем последовательных превращений, не затрагивающих асимметрического атома.

Однако для определения пространственного строения некоторых веществ этот путь оказывается непригодным ввиду невозможности их превращения в соединения с известной конфигурацией без участия в реакции асимметрического центра молекулы. В таких случаях используют другие методы, из которых наиболее важными в настоящее время являются кинетический метод, асимметрический синтез, спектрополяриметрия и рентгеноструктурный анализ.

Применение кинетического метода для определения конфигурации основано на том, что установление бимолекулярного механизма реакции нуклеофильного замещения считается равносильным доказательству наличия инверсии. С помощью этого метода была, например, определена конфигурация природного (—)-серина. Это соединение, путем замены в нем гидроксильной группы на хлор и последующего восстановления, т. е. путем реакций, не затрагивающих асимметрический центр, превращается в (+)-аланин; оба соединения должны, следовательно, иметь одинаковую конфигурацию. Тот же (+)-аланин получается из (+)-α-бромпропионовой кислоты, которая при щелочном гидролизе дает L-(+)-молочную кислоту:

Как показывают кинетические измерения, обе реакции нуклеофильного замещения при асимметрическом центре (+)-α-бромпропионовой кислоты протекают по бимолекулярному механизму и, следовательно, сопровождаются вальденовским обращением (в схеме это показано кружком на стрелке, указывающей направление реакции). Двойная инверсия равноценна сохранению конфигурации, и поэтому (+)-аланин, а следовательно, и (—)-серии должны быть отнесены к тому же L-ряду, что и (+)-молочная кислота, в то время как (+)-α-бромпропионовая кислота относится к D-ряду.

Асимметрический синтез может быть использован, например, для определения абсолютной конфигурации оптически деятельных спиртов, у которых асимметрический атом углерода связан с гидроксилом и тремя существенно различными по величине заместителями (Б — наибольший заместитель, Ср — средний, М — меньший по эффективному объему):

Если при помощи хлорангидрида фенилглиоксиловой кислоты превратить спирт I в кетоэфир III и подействовать на него реактивом Гриньяра, то образуются сложные эфиры L(+)- и D(—)-форм атролактиновой кислоты (IV и V):

При этом соединение IV получится в несколько большем количестве, чем V, так как присоединение метальной группы к кетонному карбонилу в молекуле кетоэфира III происходит легче со стороны заместителя Ср (из-за плоскости чертежа), чем со стороны большего по размерам заместителя Б. Поэтому после омыления смеси сложных эфиров IV и V получится смесь L(+)- и D(—)-атролактиновых кислот, в которой преобладает L(+)-форма, вследствие чего эта смесь кислот не является рацемической, а вращает плоскость поляризации света вправо. Если бы исходный спирт обладал конфигурацией II, то в результате тех же превращений получилась бы атролактиновая кислота, содержащая избыток молекул D(—)-антипода и потому вращающая влево. Таким образом, определив направление вращения получившейся атролактиновой кислоты, можнo установить пространственное строение исходного спирта. Этот метод позволил выяснить абсолютные конфигурации в ряду терпенов, стероидов и некоторых других сложных природных соединений.

Спектрополяриметрический метод основан на изучении физического свойства, наиболее характерного для каждого асимметричного вещества, а именно его оптической активности. Раньше уже указывалось, что направление вращения плоскости поляризации света само по себе не определяет принадлежности соединения к D— или L-ряду. Если два сходных по структуре вещества имеют не только одинаковые по знаку, но и близкие по величине [α]D, это также не означает, что они обладают одинаковым пространственным строением. Идентичность конфигураций этих веществ может быть установлена лишь путем измерения их оптической активности на протяжении всей видимой и доступной ультрафиолетовой частей спектра и сравнения получающихся при этом кривых зависимости величины вращения от длины волны (так называемых кривых вращательной дисперсии). Например, полученная из природного антнбиотика актидиона (+)-4-метилгексанон-2-карбоновая-6 кислота имеет примерно такое же значение [α]D, как (+)-4-метилгексанон-2, для которого установлена абсолютная конфигурация III:

Тем не менее (+)-4-метилгексанон-2-карбоновой-6 кислоте следует приписать формулу I, а не формулу II, так как кривая ее вращательной дисперсии (рис. 39) имеет при

300 ммк пик (положительный эффект Коттона), тогда как кривая вращательной дисперсии 4-метилгексанона-2 имеет при этой же длине волны впадину (отрицательный эффект Коттона).

Спектрополяриметрия особенно удобна для установления абсолютной конфигурации различных алифатических и алициклических карбонильных соединений, но она успешно применяется также и к другим классам органических веществ.

Другим важнейшим методом установления конфигураций яв ляется рентгеноструктурный анализ, который позволяет определять пространственное строение самых разнообразных органических молекул.

источник

В литературе сплошь и рядом утверждается, что для питания и в качестве структурных элементов нашему метаболизму подходят только левовращающие аминокислоты. Психологически это понятно: природные аминокислоты действительно чаще всего относятся к так называемому L-ряду, а буква L обычно ассоциируется с понятием «левый». Однако такое «отнесение» L-соединений к левовращающим, а соединений D-ряда — к правовращающим абсолютно неверно. Достаточно взглянуть хотя бы на список 23 важнейших аминокислот белка (они приведены, например, в учебнике А. Н. Несмеянова и Н. А. Несмеянова «Начала органической химии»), чтобы убедиться, что левовращающих (для растворов в ледяной уксусной кислоте) — всего лишь семь, меньше трети. Остальные — правовращающие, за исключением оптически неактивного глицина. В «Химической энциклопедии» в списке из 26 наиболее распространенных аминокислот левовращающих и того меньше, всего шесть (23%). Многие путают направление вращения плоскости поляризации света веществом и строение его молекул, которые можно отнести к D- или L-виду.

Со времен Ньютона в науке шли споры: свет — это волны или частицы. Томас Юнг сформулировал в 1800 году принцип суперпозиции волн и на его основании объяснил явление интерференции света. В 1808 году Этьен Луи Малюс, экспериментируя с кристаллами исландского шпата (кальцита), открыл явление поляризации света. В 1816 году Огюстен Жан Френель высказал идею о том, что световые волны — поперечные. Френель объяснил и явление поляризации света: в обычном свете колебания происходят хаотично, во всех направлениях, перпендикулярных направлению луча. Но, пройдя через некоторые кристаллы, например исландский шпат или турмалин, свет приобретает особые свойства: волны в нем колеблются только в одной плоскости. Образно говоря, луч такого света подобен шерстяной нитке, которую продернули через узкую щель между двумя острыми лезвиями бритвы. Глаз человека лишь в редких случаях и с трудом может отличить обычный свет от поляризованного, однако это легко сделать с помощью простейших оптических приборов — поляриметров.

Выяснилось также, что при прохождении поляризованного света через некоторые вещества плоскость поляризации поворачивается. Впервые это явление обнаружил в 1811 году Франсуа Доминик Араго у кристаллов кварца. Природные кристаллы кварца имеют неправильное, асимметричное строение, причем они бывают двух типов, которые отличаются по своей форме, как предмет от своего зеркального изображения. Эти кристаллы вращают плоскость поляризации света в противоположных направлениях; их назвали право- и левовращающими.

В 1815 году Жан Батист Био и Томас Зеебек выяснили, что некоторые органические вещества (например, сахар или скипидар) также обладают способностью вращать плоскость поляризации, причем не только в кристаллическом, но и в жидком, растворенном и даже газообразном состоянии. Так было доказано, что оптическая активность может быть связана не только с асимметрией кристаллов, но и с каким-то неизвестным свойством самих молекул. Как и в случае кристаллов, некоторые химические соединения могли существовать в виде право- и левовращающих разновидностей, причем самый тщательный химический анализ не мог обнаружить между ними никаких различий. Такие разновидности назвали оптическими изомерами, а сами соединения — оптически активными. Оказалось, что у оптически активных веществ есть и третий тип изомеров -оптически неактивные. Это обнаружил в 1830 году знаменитый немецкий химик Йене Якоб Берцелиус: виноградная кислота С4Н66 оптически неактивна, а винная кислота точно такого же состава обладает в растворе правым вращением. Позднее была открыта и не встречающаяся в природе «левая» винная кислота — антипод правовращающей.

Читайте также:  30 мультикислотный пилинг с салициловой и молочной кислотами

В 1828 году Уильям Николь, используя прозрачные кристаллы исландского шпата, сконструировал поляризатор света — «призму Николя». А осуществив в 1839 году комбинацию двух таких призм, он получил поляриметр — прибор для измерения угла поворота плоскости поляризации света. С тех пор такой поляриметр стал одним из самых распространенных приборов в физических лабораториях.

Оптическую активность кристаллов физики связывали с их асимметричностью; полностью симметричные кристаллы, например кубические кристаллы поваренной соли, оптически неактивны. Причина же оптической активности молекул долгое время оставалась загадочной. Первое открытие, проливавшее свет на это явление, сделал в 1848 году Луи Пастер. Еще в студенческие годы он заинтересовался химией и кристаллографией, после окончания Высшей нормальной школы в Париже 26-летний Пастер работал лаборантом у Антуана Балара (первооткрывателя брома).

В ходе исследования Пастер приготовил раствор кислой натриевой соли виноградной кислоты НООС–CHOH–CHOH–COONa, насытил раствор аммиаком и, медленно выпаривая воду, получил красивые призматические кристаллы тетрагидрата натриево-аммониевой соли Na(NH)4C4H4O6·4H2O. Кристаллы эти оказались асимметричными. У части кристаллов одна характерная грань находилась справа, а у других — слева, причем по форме два типа кристаллов были как бы зеркальным отражением друг друга. Тех и других кристаллов получилось поровну. Зная, что в подобных случаях кристаллы кварца вращают в разные стороны, Пастер решил проверить, не будет ли наблюдаться это явление и на полученной им соли. Вооружившись увеличительным стеклом и пинцетом, Пастер аккуратно разделил кристаллы на две кучки. Их растворы, как и следовало ожидать, обладали противоположным оптическим вращением, а смесь растворов была оптически неактивной. Было непонятно, почему одно исходное вещество дало кристаллы разной формы. Пастер на этом не остановился. Из каждого раствора он осадил нерастворимую свинцовую или бариевую соль, а действуя на эти соли сильной серной кислотой, вытеснил из них более слабую органическую. Можно было предположить, что в обоих случаях получится исходная виноградная кислота, которая, как мы помним, была неактивной. Каково же было удивление Пастера, когда оказалось, что из одного раствора соли образовалась вовсе не виноградная, а известная правовращающая винная кислота, а из другого раствора получилась такая же кислота, но вращающая влево! До той поры левовращающую винную кислоту никто не видел! Эти кислоты получили название d-винной для правовращающей разновидности (от лат. dexter — правый) и l-винной для левовращающего изомера (от лат. laevus — левый).

Открытие состояло в том, что давно известная неактивная виноградная кислота оказалась смесью равных количеств также известной «правой» винной кислоты и ранее не известной «левой». Именно поэтому их смесь в кристалле или в растворе не обладает оптической активностью. Для такой смеси стали применять название рацемат (от латинского racemus — виноград; на латыни acidum racemicum — виноградная кислота), а два антипода, дающие при смешении в равных количествах оптически неактивную смесь, получили название энантиомеров (от греч. enantios — противоположный). Пастеру повезло: в дальнейшем обнаружили всего несколько подобных случаев кристаллизации при определенной температуре смеси оптически различных кристалликов, достаточно крупных, чтобы их можно было под лупой разделить пинцетом. Более того, натрий-аммониевая соль винной кислоты, с которой работал Пастер, образует кристаллы разной формы только в том случае, если кристаллизация происходит из раствора, температура которого ниже 28°С. При этом выпадает тетрагидрат. При более высоких температурах из раствора выпадают симметричные кристаллы моногидрата.

Вскоре Пастер открыл также четвертую форму винной кислоты. Она была оптически неактивной, но не являлась рацематом, так как разделить ее на антиподы оказалось невозможно. Пастер назвал эту кислоту мезовинной, от греч. mesos — средний, промежуточный. Пастер нашел еще два метода разделения рацемата на два антипода. Биохимический метод основан на избирательной способности некоторых микроорганизмов усваивать только один из изомеров. И здесь Пастеру повезло. Один из аптекарей аптеки дал ему давно стоявшую склянку с виноградной кислотой, в которой завелась зеленая плесень. В своей лаборатории Пастер выяснил: бывшая когда-то неактивной кислота стала левовращающей. Зеленый плесневой грибок Penicillum glaucum в растворе разбавленной виноградной кислоты или ее солей «поедает» только правый изомер, оставляя левый без изменения. Такое же действие оказывает эта плесень на «недеятельную» миндальную кислоту, только в данном случае она ассимилирует левовращающий изомер, не трогая правовращающий. Таких случаев стало известно немало. Например, дрожжи сахаромицета эллипсоидального (Saccharomyces ellipsoideus), в отличие от Penicillum glaucum, «специализируется» на правом изомере миндальной кислоты, оставляя без изменения левый. Другой способ разделения рацематов был химическим. Для него требовалось заранее иметь оптически активное вещество, которое при взаимодействии с рацемической смесью «выбирало» бы из нее только один энантиомер. Например, оптически активное основание давало с виноградной кислотой оптически активную соль, из которой можно было выделить соответствующий энантиомер винной и кислоты.

Работа Пастера, доказывающая возможность «расщепления» оптически неактивного соединения на антиподы, первоначально вызвала у многих химиков недоверие. Даже сам Био не поверил своему ассистенту, пока собственноручно не повторил его опыт. Вскоре Жозеф Ле Бель с помощью третьего пастеровского метода расщепил несколько спиртов на оптически активные антиподы. Иоганн Вислиценус установил, что существуют две молочные кислоты: оптически неактивная, образующаяся в скисшем молоке (молочная кислота брожения), и правовращающая, которая появляется в работающей мышце (мясомолочная кислота). Подобных примеров становилось все больше, и требовалась теория, объясняющая, чем же отличаются друг от друга молекулы антиподов. Такую теорию создал молодой голландский ученый Вант-Гофф («Химия и жизнь», 2009, № 1). Согласно этой теории, молекулы, как и кристаллы, могут быть «правыми» и «левыми», являясь зеркальным отражением друг друга. Простейший пример — молекулы, в которых имеется так называемый асимметрический атом углерода, окруженный четырьмя разными группами. Возьмем простейшую аминокислоту аланин: две изображенные молекулы невозможно совместить в пространстве никакими поворотами.

Подобные структуры, которые отличаются друг от друга как правая рука от левой, получили название хиральных (от греч. heir — рука).

В винной кислоте два асимметрических атома углерода. Если оба они будут «правыми», получится правовращающая (+)-винная кислота, если «левыми» — левовращающая (–)-винная, если один «левым», а другой — «правым», то получится мезовинная кислота. Если в смеси поровну «правых» и «левых» молекул, вещество в целом будет оптически неактивным. Именно такие вещества и получаются в колбе в результате обычного химического синтеза. И только в живых организмах при участии асимметричных агентов (например, ферментов) образуются асимметричные соединения. Так, в природе преобладают аминокислоты и сахариды только одной конфигурации, а образование их антиподов подавлено. В некоторых случаях разные энантиомеры можно различить и без всяких приборов — когда они по-разному взаимодействует с асимметрическими рецепторами в нашем организме. Яркий пример — аминокислота лейцин: ее правовращающий изомер сладкий, а левовращающий — горький. Заметим, что на естественный вопрос — как появились на Земле первые оптически активные химические соединения — четкого ответа пока нет.

Раньше не было возможности определить, какова в действительности пространственная конфигурация молекул того или иного оптически активного вещества, например упомянутого выше аланина. Однако чисто химическими методами можно было установить аналогичность конфигураций разных веществ. Например, молекулы правовращающего d-глицеринового альдегида были аналогичны по своей конфигурации молекулам левовращающей l-молочной кислоты и правовращающей d-яблочной кислоты. В 1906 году по предложению М. А. Розанова в качестве стандарта для установления относительной конфигурации оптически активных молекул был выбран глицериновый альдегид. При этом Э. Г. Фишер предложил правовращающему глицериновому альдегиду приписать (чисто произвольно) структуру,

в которой звездочкой обозначен асимметрический атом углерода, связанный с четырьмя разными заместителями. На подобных рисунках две «горизонтальные» связи (в данном случае это связи С–Н и С–ОН) располагаются под плоскостью рисунка, а две «вертикальные» связи (С–СНО и С–СН2ОН) — над плоскостью. Такой способ изображения называется проекцией Фишера, названной в честь Эмиля Германа Фишера, второго лауреата Нобелевской премии по химии за 1902 год.

Несколько слов о практически неизвестном у нас Розанове. Мартин Андре Розанов (1874–1951) родился на Украине в семье Абрахама и Клары Розенбергов. После окончания классической гимназии в родном Николаеве продолжил образование в Берлине и Париже, а затем в Нью-Йорке. Работал в Нью-Йоркском университете, затем в Питтсбургском институте Меллона, где ему впервые в истории института была предоставлена пожизненная должность профессора химии. Сестра Мартина Лилиан (1886–1986) была деканом математического факультета в университете Лонг-Айленда; брат Аарон Джошуа был известным американским психиатром, работал в Калифорнии. Среди «нехимических» работ М. А. Розанова выделяется большая статья «Эдисон в своей лаборатории» (1932), в которой автор помимо прочего описал разные забавные случаи, в том числе из опыта своего общения с известным изобретателем.

Изображенную структуру назвали D(+)-глицериновым альдегидом. Соответственно все вещества, стереохимически аналогичные этому альдегиду, стали относить к D-ряду. Оптический антипод этого альдегида был назван L-глицериновым альдегидом, а родственные ему вещества стали относить к L-ряду («+» означает, что плоскость поляризации вращается вправо, «–» — влево):

Глицериновый альдегид — одно из простейших оптически активных соединений, легко получается окислением глицерина, а главное — из него можно путем ряда последовательных асимметрических синтезов получить самые различные соединения. Так устанавливается относительная конфигурация правовращающих винной и яблочной кислот и изосерина, левовращающей молочной кислоты и множества других оптически активных соединений. При альдольной конденсации глицеринового альдегида с дигидроксиацетоном получается смесь фруктозы и сорбозы, которые можно разделить. Понятно, что в ходе таких синтезов абсолютная конфигурация у асимметрического атома углерода должна оставаться неизменной. Так и происходит, если не рвется химическая связь этого атома углерода с одним из соседних заместителей. В противном случае может произойти либо потеря оптической активности (как, например, в реакциях нуклеофильного замещения типа SN1), либо изменение конфигурации на противоположную. Последний процесс, так называемое вальденовское обращение, происходит, например, в реакциях SN2; он назван по имени Пауля (Павла Ивановича) Вальдена (1863–1957), открывшего его в 1889 году.

Прописные буквы D и L вместо строчных были приняты для того, чтобы не смешивать конфигурацию вещества, установленную относительно глицеринового альдегида, с направлением вращения плоскости поляризации света этим веществом. Так и получилось, что часть соединений D-ряда вращают вправо, часть — влево, и направление вращения никак не связано с принадлежностью вещества к кому-либо из этих рядов. Например, в природе найдена только D(-)-фруктоза (она же левулоза, потому что вращает плоскость поляризации влево). С другой стороны, и L-, и D-аспарагины — правовращающие аминокислоты. У миндальной кислоты С6Н5СН(ОН)СООН — два оптических изомера: левовращающий D(–)- и правовращающий L(+)-изомер. Таких примеров множество. Следовательно, нельзя заранее установить отношение между знаком вращения соединения и его конфигурацией: два соединения с одной и той же относительной конфигурацией могут иметь противоположные знаки вращения. И наоборот, сходные соединения с одним и тем же знаком вращения могут иметь противоположные относительные конфигурации.

Прямое определение абсолютной конфигурации молекулы — сложная задача, и в течение длительного времени химики обходились лишь отнесением молекул к D- или L-ряду. И только в середине XX века эта задача была решена Дж. Бейвутом с сотрудниками, которые работали в лаборатории имени Вант-Гоффа Утрехтского университета. Эпохальная работа под названием «Определение абсолютной конфигурации оптически активных веществ методом дифракции рентгеновских лучей» была опубликована 18 августа 1951 года в журнале «Nature». Авторы путем рентгеноструктурного анализа кристаллов калий-рубидиевой соли D(+)-винной кислоты показали, что Фишер не ошибся, постулировав абсолютную конфигурацию энантиомеров глицеринового альдегида! А это значит, что правильны были установлены не только относительные, но и абсолютные конфигурации всех оптически активных соединений! На самом деле у Фишера было ровно по 50% шансов сделать правильный выбор или ошибиться. Сходная история имела место, когда задолго до открытия электрона выбирали направление для протекания электрического тока. И — ошиблись, выбрав направление от плюса к минусу.

Поскольку в основополагающей исходной публикации Бейвута в журнале Nature не были приведены исходные экспериментальные данные, принципиальным оставался вопрос об обоснованности сделанных выводов, тем более что экспериментальная техника тех времен была далеко не совершенной. В частности, не было компьютеров, без которых сейчас не обходится ни одна работа в области рентгеноструктурного анализа. Чтобы снять все возможные подозрения, сотрудники Центра молекулярной биологии Утрехтского университета Мартин Лутц и М. М. Шроерс предприняли недавно проверку результатов своих коллег более чем полувековой давности с использованием самого современного оборудования. Их работа, опубликованная в августе 2008 года в журнале «Acta Crystallographica», section С: «Crystal Structure Communications», называлась «Был ли прав Бейвут? Повторное исследование тетрагидрата тартрата натрия — рубидия». Для получения монокристалла авторы нагрели раствор (+)-винной кислоты до 60°С и начали по каплям добавлять в него раствор эквимолярной смеси карбонатов натрия и рубидия. Сначала в осадок выпал менее растворимый кислый тартрат рубидия. Затем, когда закончилось выделение углекислого газа, осадок полностью перешел в раствор. При его испарении при комнатной температуре образовался бесцветный порошок, перекристаллизация которого из минимального количества воды дала кристаллы Na + ·Rb + ·C4H4О6 2– ·4H2О, пригодные для исследования. На вопрос, заданный в заголовке статьи, авторы ответили «да».

Читайте также:  36 молекул атф и молочная кислота образуются на этапе

Работа Бейвута с сотрудниками 1951 года была поистине эпохальной. Впервые появилась возможность избавиться от некоторого несоответствия в обозначениях D и L, которые указывали только на генетическую связь с глицериновыми альдегидами, но никак не на направление оптического вращения. Такая возможность была осуществлена в 1956 году по предложению Роберта Сидни Кана и Кристофера Келка Ингольда и лауреата Нобелевской премии за 1975 год (совместно с Дж. У. Корнфортом) Владимира Прелога. Их первая статья была опубликована в сравнительно малоизвестном швейцарском журнале «Experientia», и тем не менее предложение получило широкое распространение. Так, оно подробно описывается в учебнике органической химии Луиса и Мэри Физеров (1961, русский перевод 1966). Но наибольшую известность эта система получила после публикации в 1966 году детально разработанной универсальной стереохимической номенклатуры (см. Cahn R.S., Ingold С.К., Prelog V. Specification of Molecule Chirality // Angew. Chem., Int. Ed. Engl., 1966, 5, 385–415; полный текст — PDF, 3,4 Мб).

Авторы предложили ввести понятие хиральности как свойства объекта быть несовместимым со своим отображением в идеальном плоском зеркале и RS-систему (от лат. rectus -прямой, правильный и sinister — левый) для обозначения хиральности.

Подробное описание применения этого правила к оптически активным соединениям можно найти в учебниках органической химии, а так же в учебнике К. П. Бутина. В нем используется определенное расположение групп вокруг хирального центра — по часовой стрелке, в соответствии со «старшинством» этих групп. В частности, по новой номенклатуре правовращающий D-глицериновый альдегид получает обозначение R. Обозначения R и S добавляют к названию соединения в качестве приставок. Так, энантиомерами 1-бром-1-хлорэтана являются R-1-бром-1-хлорэтан и S-1-бром-1-хлорэтан. Их оптически неактивная рацемическая модификация обозначается R,S-1-бром-1-хлорэтан. Однако по традиции широко используются и старые обозначения D и L, например, для cахаров и аминокислот.

В заключение этого раздела отметим еще одно весьма распространенное заблуждение — о том, что все природные аминокислоты относятся якобы исключительно к L-ряду. На самом деле это не так: D-аминокислоты тоже 2 встречаются в природе, хотя и реже, чем аминокислоты L-ряда, в основном — в мире низших организмов. Они присутствуют, например, в пептидных антибиотиках, в оболочке некоторых бактерий. Некоторые термофильные микроорганизмы, живущие в горячих источниках и термальных водах, используют высокие концентрации D-аланина в качестве осморегулятора. Плазма крови высших организмов также содержит D-аминокислоты. В организме человека вырабатывается в качестве нейромедиатора D-серин. В нервных клетках высших организмов находят D-аланин, D-аспарагин и D-серин. С D-аминокислотами работают, например, на кафедре химической энзимологии химического факультета МГУ. А в 2008 году на биологическом факультете МГУ состоялась защита А. В. Дмитриевым диссертации на соискание степени доктора физико-математических наук на тему «Физико-химические механизмы переноса ионов в природных и хирально модифицированных модельных каналах». Автор изучал, в частности, модифицированные модельные белки, включающие D-аминокислоты. Было показано, что для получения первичной структуры белка с природной функциональностью, построенного из D-аминокислот, достаточно десяти D-аминокислот.

Химики часто относятся к энантиомерам как к одному соединению, поскольку их химические свойства идентичны. Однако их биологическая активность может быть совершенно различной. Это стало очевидным после трагической истории с талидомидом — лекарственным средством, которое широко применялось в 60-е годы XX века в Европе беременными женщинами как эффективное снотворное и успокаивающее. Со временем проявилось его тератогенное действие, и на свет появилось много младенцев с врожденными уродствами. После этого европейцы заимствовали более строгую американскую систему сертификации лекарств — в Америке талидомид не был допущен к продаже. Но лишь в конце 80-х годов выяснилось, что причиной несчастии стал только один из энантиомеров талидомида. О таком различии в действии лекарственных форм раньше не знали, и продаваемый талидомид был рацемической смесью.

В настоящее время многие лекарственные средства выпускаются в виде оптически чистых соединений. Их получают тремя методами: разделением рацемических смесей, модификацией природных оптически активных соединений (к ним относятся углеводы, аминокислоты, терпены, молочная и винная кислоты и др.) и прямым синтезом. Последний также требует хиральных источников, поскольку любые другие традиционные методы синтеза дают рацемат. Это одна из причин высокой стоимости некоторых лекарств, и не удивительно, что из множества синтетических хиральных препаратов, выпускаемых во всем мире, лишь небольшую часть составляют оптически чистые, остальные — рацематы.

Необходимость в оптически чистых энантиомерах объясняется также тем, что часто только один из них обладает требуемым терапевтическим эффектом, тогда как второй антипод может в лучшем случае быть бесполезным, а в худшем вызвать нежелательные побочные эффекты или быть токсичным. Бывает и так, что каждый энантиомер обладает своим специфическим действием. Так, левовращающий S-тироксин (лекарственный препарат левотроид) — это природный гормон щитовидной железы Т4. А правовращающий R-тироксин («декстроид») понижает содержание холестерина в крови. Некоторые производители придумывают для подобных случаев торговые названия-палиндромы, например «Darvon» для наркотического анальгетика и «Novrad» для противокашлевого препарата.

Как уже отмечалось на примере аминокислоты лейцина, человек — существо хиральное. И это относится не только к его внешнему виду. Энантиомерные лекарства, взаимодействуя с хиральными молекулами в организме, например с ферментами, могут действовать по-разному. «Правильное» лекарство подходит к своему рецептору, как ключ к замку, и запускает желаемую биохимическую реакцию. Антиаритмическое средство S-анаприлин действует в сто раз сильнее, чем R-форма. У антигельминтного препарата левамизола активен в основном в S-изомер, тогда как его R-антипод вызывает тошноту, поэтому в свое время рацемический левамизол был заменен одним из энантиомеров. В 60-е годы одним из предшественников адреналина в организме — диоксифенилаланином (L-ДОФА) пытались лечить паркинсонизм. При этом выяснилось, что это вещество, а также родственные ему дофамин и метилдофа эффективны только в виде S-изомера. В то же время R-ДОФА вызывает серьезные побочные эффекты, в том числе заболевание крови. Фирма «Merck» разработала способ производства гипотензивного препарата метилдофа, включающий самопроизвольную кристаллизацию только нужного энантиомера путем введения в раствор небольшой затравки этого изомера.

И последний пример. Пеницилламин (3,3-диметилцистеин) — довольно простое производное аминокислоты цистеина. Это вещество применяют при острых и хронических отравлениях медью, ртутью, свинцом, другими тяжелыми металлами, так как оно дает прочные комплексы с ионами этих металлов, и эти комплексы удаляются почками. Применяют пеницилламин также при различных формах ревматоидного артрита, при системной склеродермии, в ряде других случаев. При этом применяют только S-форму препарата, так как R-изомер токсичен и может привести к слепоте. Недаром на обложке июньского номера американского журнала «Journal of Chemical Education» за 1996 год был помещен вот такой необычный рисунок. Название статьи о лекарственных средствах-антиподах было не менее красноречивым: «Когда молекула смотрится в зеркало».

Илья Абрамович Леенсон,
кандидат химических наук
«Химия и жизнь» №5, 2009

источник

1. Строение и конфигурация органических молекул.

2. Стереоизомерия: а) геометрическая; б) оптическая.

3. Конформация органических молекул: а) ациклических; б) карбоциклических; в) конденсированных кольцевых систем.

Каждое органическое вещество рассматривается в трех аспектах: с точки зрения химического строения, конфигурации, конформации.

Строение – это последовательность химических связей атомов в молекуле. Последовательность расположения атомов чрезвычайно важна в молекулах органических веществ, имеющих один и тот же химический состав, т.е. когда речь идет об изомерах, изомерии. Строение предполагает, что все связи находятся в одной плоскости. Но при изображении строения молекулы на плоскости бумаги (доски) теряется представление об её истинном положении в пространстве. Напр., атом углерода находится в sp 3 -гибридизации, имеет тетраэдрическое строение и все его заместители расположены под углом 109,5°. Если соединение содержит такой атом углерода в своей структуре, то атомы молекулы не лежат в одной плоскости, она имеет определенную конфигурацию – пространственное расположение атомов или групп атомов. При графическом изображении конфигурации молекулы этана две связи, лежащие в плоскости, обозначаются прямыми линиями. [строение этана, (конф1)]

Зачерненный клин обозначает связь, выходящую из плоскости проекции и направленную к наблюдателю

Заштрихованный клин (или пунктирная линия) обозначает связь, выходящую из плоскости проекции и направленную от наблюдателя.

Конфигурация этана может быть представлена в следующем виде: (конф2)

Область химии, занимающаяся изучение пространственного атомов и атомных групп, называется стереохимией.

Стереохимия рассматривает трехмерные структуры молекул, относящиеся к строению, конфигурации и конформации.

Различают стереоизомерию двух типов (видов): а) геометрическую, б) оптическую.

Геометрическая изомерия (или цис-/транс-изомерия) предполагает наличие в органических веществах двойной связи – речь идет об ациклических соединениях (может встречаться и в некоторых циклических соединениях, когда два заместителя могут иметь различную ориентацию относительно друг друга, и возможны цис- и транс-изомеры).

Двойная углерод-углеродная С=С связь вносит в молекулу значительную степень жесткости. Относительно свободное вращение, возможное вокруг простой связи, не происходит в случае двойной связи.

Приставка «цис-» дается тому геометрическому изомеру, у которого одинаковые заместители находятся по одну сторону двойной связи, а приставка «транс-» – тому, у которого они находятся накрест по отношению к двойной связи. [малеиновая и фумаровая к-ты, (конф3)]

Эти два геометрических изомера реально существуют и отличаются различными физическими и химическими свойствами (температура кипения, плавления: малеиновая – 130°С; фумаровая – 287°С). [превращение этих к-т в малеиновый ангидрид, (конф4)]

Среди причин, вызывающих заболевание псориаз, следует назвать нарушение процесса изомеризации этих двух кислот. Эфиры фумаровой кислоты используют для лечения псориаза.

Оптическая активность – это свойство органических веществ вращать плоскость поляризованного света.

Далеко не все органические вещества обладают оптической активностью. Причина оптической активности – ассиметрическое строение молекул, т.е. наличие ассиметрических атомов углерода в органических веществах.

Ассиметрический атом углерода – это такой атом, который соединен с четырьмя различными атомами или группами атомов. С оптической активностью связан также термин хиральность – явление, при котором молекула не может быть совмещена со своим зеркальным изображением, т.е. она не имеет элементов симметрии – или плоскости, или центров симметрии. Термин происходит от греч. chiros – рука: совместить ладони рук в одной плоскости невозможно.

Оптический изомер характеризуется триадой: ассиметрический атом ® хиральность ® оптическая активность.

Описывая хиральность, обозначают конфигурацию молекулы. Различают абсолютную и относительную конфигурацию. Относительная конфигурация выводится путем сравнения с эталоном (D- и L-глицериновым альдегидом).

Все стереоизомеры принято писать проекционными формулами Фишера, учитывая правила:

1) проекционные формулы пишут вертикально;

2) наиболее окисленный атом углерода располагают сверху;

3) вертикальные связи, направленные от наблюдателя, обозначают пунктиром, а направленные к наблюдателю – прямой линией;

4) ассиметрический атом углерода, как правило, не пишут.

[D и L шлицериновый альдегид, (конф5)]

Если в эталоне атом Н слева, а группа ОН справа, то это D-глицериновый альдегид, если же расположение атома и атомной группировки противоположное, это L-глицериновый альдегид.

Оптический эффект (способность раствора вращать плоскость поляризованного света) – это объективный фактор (свойство), обусловленный природой вещества; он определяется экспериментальным путем в поляриметре. Правосторонний эффект обозначается знаком «+», а левостороннее вращение «–».

Не всегда имеет место совпадение стороны проявленного оптического эффекта и принадлежности к ряду (напр. в молочной кислоте). D- и L-молочная кислота (конф6) имеют одинаковые физические и химические свойства, а отличаются по оптическим свойствам (сторона оптического эффекта), они – энантиомеры.

Энантиомеры – это изомеры, имеющие одинаковые физические (кроме знака вращения) и химические свойства, относящиеся друг к другу как предмет к его зеркальному отражению.

Абсолютная конфигурация определяется с помощью различных сложных способов, напр., методом рентгеноструктурного анализа определяют реальное расположение атомов в пространстве. Данные определения абсолютной конфигурации совпадают с относительной конфигурацией, поэтому повседневно пользуются удобной относительной конфигурацией.

Конфигурация молекул – это фиксированное расположение атомов или групп атомов относительно друг друга в пространстве. Однако большинство молекул может находиться в нескольких взаимопревращающихся формах, или конформациях, переход между которыми происходит без разрыва связи. Конформация – следующий аспект трехмерности структуры молекул.

Конформация – это существование нескольких геометрических форм одного и того же вещества, самопроизвольно, с большой скоростью превращающихся друг в друга без изменения валентных углов и длин связей вследствие свободного вращения атомных группировок вокруг s-связей (С-С, N-N, C-N). Такие изомеры (формы) называют конформерами или поворотными изомерами.

Читайте также:  20 капсул содержащих железа лактат

Существуют эти формы непродолжительное время. Вращение атомных групп вокруг s-связей постоянно. Между временем существования и стабильностью конформера существует прямая зависимость. Есть термин – заторможенная конформация конформера, т.е. существование ее более продолжительно. [две конформации этана, (конф7)]

В конформации «а» при рассмотрении вдоль связи С-С атомы водорода ближайшей CH3-группы будут «заслонять» атомы водорода второй, удаленной, СН3-группы. В конформации «б» атомы водорода СН3-группы расположены в промежутках между атомами водорода первой СН2-группы. Такую конформацию называют заторможенной.

Для более наглядного изображения конформаций пользуются проекционными формулами Ньюмена.

При построении формулы Ньюмена на молекулу смотрят вдоль углеродной связи, с «торца», так что два атома углерода видны один позади другого. [примеры проекций, (конф8)] [конформации этана, проекции Ньюмена, (конф9)]

В центре рисунка, на пересечении трех сходящихся прямых, находится атом углерода приближенной к нам метильной группы. Связи С-Н второй, удаленной, группы СН3 «выглядывают» из-за круга.

Для перехода этана из заторможенной конформации в заслоненную необходимо затратить примерно 12,5 кДж/моль энергии. Такой незначительный энергетический барьер не позволяет выделить отдельные поворотные изомеры. В каждой молекуле постоянно совершаются превращения из одной конформации в другую. Хорошо известно, что молекулы с меньшей внутренней энергией обладают большей устойчивостью. Из числа поворотных изомеров более устойчивыми, более энергетически выгодными, являются заторможенные: в этих положениях внутреннее вращение вокруг одинарных связей как бы тормозится, отсюда название – заторможенные.

Одна из форм наименее устойчива, другие более стойкие, при этом заместители заслоняют друг друга (одновременно увеличиваются силы отталкивания). Заслоненная конформация менее устойчива.

Для обозначения конформаций используют условное обозначение угла (в единицах, кратных 60°), который указывает на взаимную ориентацию СН3-групп.

Заместители в этой форме удалены друг от друга, силы отталкивания и потенциальная энергия меньше. Такая конформация называется заторможенной – энергетически выгодной и более стабильной. Разделение на подобные формы относительно, поскольку выделить их в чистом виде практически невозможно. [заторможенная конф., (конф10)]

Рассмотрим заторможенные конформации н-бутана (заслоненная не стабильна). Наиболее стабильными конформациями н-бутана является скошенная (гош) и трансоидная (анти), причем трансоидная (анти) немного более стабильна, потому что в ней две метильные группы расположены так далеко друг от друга, как только возможно.

[скошеная конформация (гош) и стабильная конформация (анти), (конф11)]

Эти конформации характерны для небольших структур. Начиная с пяти атомов углерода и больше ациклические углеводороды могут иметь следующие конформации: [клешневидная, зигзагообразная, нерегулярная, (конф12)]

Наиболее выгодной конформацией является клешневидная.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9179 — | 7252 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Проекционные формулы Фишера. Относительная D- и L – система стереохимической номенклатуры. Абсолютная конфигурация стереоизомеров.

Проекционные формулы Фишера.Рассмотрим их построение на примере молочной (2-гидроксипропановой) кислоты.

Тетраэдрическую модель одного из энантиомеров (рис. 10) располагают в пространстве так, чтобы цепь атомов углерода оказалась в вертикальном положении, а карбоксильная группа — сверху. Связи с неуглеродными заместителями (Н и ОН) у хирального центра должны быть направлены к наблюдателю.

Рис. 10.Построение проекционной формулы Фишера (+)-молочной кислоты

После этого модель проецируют на плоскость. Символ асимметрического атома при этом опускается, под ним понимают точку пересечения вертикальной и горизонтальной линий.

Тетраэдрическую модель хиральной молекулы перед проецированием можно располагать в пространстве по-разному, не только так, как показано на рис. 7. Необходимо только, чтобы связи, образующие на проекции горизонтальную линию, были направлены к наблюдателю, а вертикальные связи — за плоскость рисунка.

Полученные таким образом проекции можно с помощью несложных преобразований привести к стандартному виду, в котором углеродная цепь расположена вертикально, а старшая группа (в молочной кислоте это СООН) — сверху. Преобразования разрешают две операции:

• в проекционной формуле разрешается менять местами два любых заместителя у одного и того же хирального центра четное число раз (двух перестановок бывает достаточно);

• проекционную формулу разрешается поворачивать в плоскости рисунка на 180° (что эквивалентно двум перестановкам), но не на 90°.

Тетраэдрическую модель строения органических соединений предложили Я.Г.Вант-Гофф и Ж.А.Ле-Бель в 1874 г. Они пришли к выводу, что если две молекулы являются стереоизомерами, то их можно описать зеркальными формулами, и если один изомер вращает плоскость поляризации влево, то второй должен вращать вправо. По знаку вращения можно определить относительную конфигурацию стереоизомеров. Однако между абсолютной конфигурацией, т.е. истинным расположением групп вокруг данного хирального центра, и знаком вращения прямого соответствия нет. Определить абсолютную конфигурацию химическими методами, если не известна абсолютная конфигурация хотя бы одного хирального реагента (а так и было вначале), невозможно. Спектральные методы могут дать информацию только об относительной конфигурации. В настоящее время существуют лишь два метода независимого определения абсолютной конфигурации: теоретический расчет и исследование аномальной дифракции рентгеновских лучей на ядрах тяжелых элементов.

Но в конце XIX — начале XX века этих методов не существовало и поэтому химики придумали следующий выход. Решили взять в качестве стандарта какое-нибудь одно соединение и произвольно приписать ему одну из возможных абсолютных конфигураций. Выбор пал на глицериновый альдегид по той причине, что он структурно связан с сахарами, которые в то время изучал Эмиль Фишер. (+) — Изомеру была приписана абсолютная конфигурация и он был обозначен буквой D (dextriogyrus — правый), а соответствующий (-) — изомер — буквой L (laevogyrus — левый). Как только был выбран стандарт, стало возможным соотносить с ним конфигурацию других соединений. Например, при окислении с помощью HgO (+)-глицериновый альдегид дает (-)-глицериновую кислоту. Данная реакция не затрагивает асимметричский атом, поэтому очень мало вероятно, чтобы его конфигурация изменилась, и следовательно (-)-глицериновая кислота относится к D — ряду.

Отнесение к D- или L-ряду других родственных по структуре оптически активных соединений производится путем сравнения конфигурации их асимметрического атома с конфигурацией D- или L-глицеринового альдегида. Например, у одного из энантиомеров молочной кислоты (I) в проекционной формуле группа ОН находится слева, как у L-глицеринового альдегида, поэтому энантиомер (I) относят к L-ряду. Из тех же соображений энантиомер (II) относят к D-ряду. Так из сравнения проекций Фишера определяют относительнуюконфигурацию.

Следует отметить, что L-глицериновый альдегид имеет левое вращение, а L-молочная кислота — правое (и это не единичный случай). Более того, одно и то же вещество может быть как лево-, так и правовращающим в зависимости от условий определения (разные растворители, температура).

источник

8.4. Методы определения конфигурации

8.4.1. Определение абсолютной конфигурации

Для определения абсолютной конфигурации применяются два метода: экспериментальное исследование аномальной дифракции рентгеновских лучей на ядрах тяжелых атомов и теоретический расчет величины оптического вращения.

8.4.1.а. Дифракция рентгеновских лучей

Благодаря тому, что рентгеновские лучи при прохождении через кристаллы дают дифракционную картину, метод рентгено-структурного анализа (РСА) широко используется для установления строения химических соединений. Когда дифракция происходит на электронных оболочках легких атомов (C,H,N,O,F,Cl), характер наблюдаемой интерференциальной картины определяется только наличием самих ядер, но не их природой. Это объясняется тем, что легкие атомы лишь рассеивают рентгеновские лучи, но не поглощают их, и поэтому в ходе эксперимента не происходит изменения фазы рассеянного излучения.

Тяжелые атомы не только рассеивают, но и поглощают рентгеновские лучи в определенных областях кривой поглощения. Если длина волны падающего излучения совпадает с начальным слабо поглощающим участком этой кривой, то наблюдается не только обычная дифракция, но также и некоторый сдвиг по фазе рассеянного излучения, обусловленный тем, что часть его поглощается. Это явление называется аномальным рассеянием рентгеновских лучей. При наличии лишь легких атомов РСА позволяет определить межъядерные расстояния между связанными и несвязанными атомами и на их основе сделать выводы о строении данной молекулы и о наличии в ней хиральных элементов. В этом случае различить энантиомеры нельзя. Однако при наличии тяжелых атомов характер аномального рассеяния зависит не только от расстояния между атомами, но и от относительного расположения в пространстве. Явление аномальной дифракции рентгеновских лучей позволяет непосредственно определить абсолютные конфигурации молекул, содержащих тяжелые атомы, а также молекул, в которые тяжелые атомы могут быть введены в качестве специальных меток.

Впервые такой анализ был проведен Бейфутом в 1951 г, который на основании того, что Кa -излучение циркония совпадает с началом полосы поглощения рубидия, а La -излучение урана — с началом полосы поглощения брома, впервые установил абсолютную конфигурацию (+)-натрийрубидийтартрата (XXVIII) и гидробромида (-)-изолейцина (XXIX).

После установления абсолютной конфигурации соединения XXVIII выяснилось, что ранее произвольно выбранная конфигурация (+)-глицеринового альдегида, оказалось, как это ни удивительно, угаданной правильно.

В настоящее время с помощью РСА определена абсолютная конфигурация нескольких сотен соединений. Следует сказать, что анализ аномальных дифракционных картин вручную чрезвычайно трудоемкий процесс. Однако с помощью современных автоматических дифрактометров, снабженных ЭВМ, на это уходит всего несколько дней.

8.4.1.б. Теоретический расчет оптического вращения

В 1952 г был опубликован квантово-химический расчет оптического вращения знантиомеров на примере транс-2,3-эпоксибутана (XXX). Конфигурация этого эпоксида может быть скоррелирована с конфигурацией винной кислоты и далее с глицериновым альдегидом. При этом снова обнаружилось, что ранее произвольно выбранная стереоформула D-глицеринового альдегида совершенно правильна и нет необходимости изменять принятое в литературе в течение многих лет изображение этой конфигурации.

8.4.2. Определение относительной конфигурации

При определении относительной конфигурации соединение с неизвестной конфигурацией соотносят с другим соединением, конфигурация которого уже известна. Рассмотрим наиболее важные из этих методов.

8.4.2.а. Химическая корреляция

Химические методы, которые могут быть использованы для установления относительных конфигураций, очень разнообразны и настолько тесно переплетены с общим материалом органической химии, что встречаются практически во всех главах этой книги, посвященных рассмотрению отдельных классов органических соединений. Поэтому здесь мы рассмотрим на нескольких примерах лишь основные принципы их применения.

Первая группа методов связана с превращением соединения с неизвестной конфигурацией в соединение с известной конфигурацией или образованием неизвестной конфигурации из известной без нарушения хирального элемента, например, хирального центра. Поскольку в ходе превращения хиральный центр не затрагивается, очевидно, что продукт должен иметь ту же конфигурацию, что и исходное соединение.

При этом вовсе не обязательно, что если неизвестное соединение относится к (R)-ряду, то и известное будет иметь (R)-конфигурацию. Например, при восстановлении (R)-1-бром-2-бутанола в 2-бутанол, не затрагивающем хиральный центр, продуктом будет (S)-изомер несмотря на то, что его конфигурация не изменилась. Это связано с тем, что группа СH3CH2 определению (см. раздел 8.3.3.) младше группы BrCH2, но старше группы СН3.

Одним из многих примеров химической корреляции является установление относительной конфигурации D-галактозы (XXXI) путем ее окисления. Поскольку этот процесс приводит к образованию оптически неактивной дикарбоновой кислоты, относительная конфигурация ее четырех хиральных центров может соответствовать или структуре XXXII, или структуре XXXIII. Но дикарбоновая кислота (XXXIV), полученная из галактозы путем окислительного отщепления альдегидного атома углерода, оптически активна. Следовательно, D-галактоза имеет относительную конфигурациию, показанную формулой XXXI.

Аналогичные превращения с L-галактозой дают такие же результаты, за исключением противоположного знака оптического вращения. Следовательно, подобным путем можно выяснить лишь относительную конфигурацию исследуемых молекул (в данном случае XXXI и XXXII), но не их абсолютные конфигурации.

Ниже приведен пример конфигурационной корреляции (+)-винной кислоты с (+)-(R)-глицериновым альдегидом на основе превращений, не затрагивающих асимметрический центр.

Вторая группа методов химической корреляции основана на превращении при хиральном центре, механизм которого точно известен. Так, реакция SN2 происходит с обращением (инверсией) конфигурации реакционного центра (см.гл.9 ). С помощью последовательности таких реакций конфигурация (+)-молочной кислоты была скоррелирована с конфигурацией (S)-(+)-аланина.

Следует подчеркнуть, что понятие «обращение» или «сохранение» конфигурации применимо и к ахиральным реакционным центрам и служит для указания конкретного механизма реакции. Однако, когда речь идет об абсолютных конфигурациях хиральных реакционных центров (которые определяются правилами последовательного старшинства в рамках R,S-номенклатуры), привлекать понятия «обращение» или «сохранение» конфигурации нет смысла, т.к. та или иная конфигурация определяется только старшинством заместителей, и изменение старшинства в результате замещения одной из групп не обязано совпадать с реальной пространственной ориентацией его вступления в молекулу, например:

К третьей группе относятся биохимические методы. В ряду одного класса соединений, например, аминокислот, определенный фермент атакует молекулы только одной конфигурации. Если какой-то фермент, скажем, атакует только (S)-аминокислоты, не трогая (R)-форму, и это экспериментально установлено на ряде примеров, то еще одна аминокислота, подвергающаяся действию того же фермента, должна принадлежать к (S)-ряду.

Сервер создается при поддержке Российского фонда фундаментальных исследований
Не разрешается копирование материалов и размещение на других Web-сайтах
Вебдизайн: Copyright (C) И. Миняйлова и В. Миняйлов
Copyright (C) Химический факультет МГУ
Написать письмо редактору

источник