Меню Рубрики

Сополимеры молочной и гликолевой кислоты

22. Enhanced cutaneous bioavailability of dehydroepiandrosterone mediated by nano-encapsulation / A. Badihi,N. Debotton , M. Frušić-Zlotkin et al. // Control Release J. — 2014. — Vol. 189. — P. 65-71.

23. Effect of temperature on mechanisms of drug-release and matrix degradation of poly (D,L-lactide) microspheres / Y. Aso, S. Yoshioka, A. L. W. Po et al // J. Controlled Release. — 1994. — Vol. 31. — P. 3339.

24. Jalil, R. Biodegradable poly(lactic acid) and poly(lactide-coglycolide) microcapsules: problems associated with preparative techniques and release properties / R. Jalil, J. R. Nixon // Microencapsulation. J. — 1990. — Vol. 7. — P. 297-325.

25. Kissel, T. Syntesis, characteristics and in vitro degradation of star-block copolimers consisting of L-lactide, glycolide and branched multi-arm poly(ethylene oxide) // Polymer. — 1998. — Vol. 39. — P. 4421-4427.

26. Knox P. Leukocyte activation and rheological changes: Effect of pentoxifylline. In: Mandell GL. NovickWG Jr eds. Pentoxifilline and leukocyte function. Sommerville, NJ: Hoechst — Russel Pharmaceuticals, 1993. -P.96-104.

27. Odds, F.C. Activities of an intravenous formulation of itraconazole in experimental disseminated Aspergillus, Candida, and Cryptococcus infectionsn / F.C. Odds, М. Oris, P. Van Dorsselaer //Antimicrob Agents Chemother. — 2000. — Vol. 44(11). -P. 3180-3183.

28. Pai, S. S . Poly(ethylene glycol)-modified proteins: implications for poly(lactide-co-glycolide)-based microsphere delivery / S. S. Pai, R. D. Tilton ,T. M. Przybycien // AAPS. J. — 2009. — Vol. 11(1). — P. 88-98.

29. Pai, S. S . Poly(ethylene glycol)-Modified Proteins: Implications for Poly(lactide-co-glycolide)-Based Microsphere Delivery / S. S. Pai , R. D. Tilton , T. M. Przybycien // AAPS J. — 2009. — Vol.11(1). — P. 88-98.

30. Polymer erosion in PLGA microparticles produced by phase separation method/ M. Husmann, S. Schenderlein, M. Lück et al. // Int. J. Pharm. — 2002. — Vol. 2. — P. 277-280.

31. Porous silicon oxide-PLGA composite microspheres for sustained ocular delivery of daunorubicin / K. Nan, F. Ma,H. Hou et al. // ActaBiomater. — 2014. — Vol. 10(8). — P. 3505-3512.

32. Quintiliani, R. Clinical role of fluoroquinolones in patients with respiratory tract infections / R. Quintiliani, R. Owens Jr, E. Grant // Infect Dis ClinPract. — 1999. — Vol. 8. — Р. 28-41.

33. Repair of spinal cord injury by inhibition of astrocyte growth and inflammatory factor synthesis through local delivery of flavopiridol in PLGA nanoparticles / H. Ren, M. Han, J. Zhou et al. // Biomaterials. — 2014. -Vol. 35(24). — P. 6585-6594

34. Rudzinski, D. Biodegradable polymeric nanoparticles as drug delivery devices / D. Rudzinski, K. Soppimath // J. Controlled Release. — 2001. — Vol. 70. — P. 1 — 20.

35. The potential of using biodegradable microspheres in retinal diseases and other intraocular pathologies / R. Herrero-Vanrell, I. Bravo-Osuna, V. Andrés-Guerrero et al. // ProgRetin Eye Res. — 2014. — Vol. 42. — P. 27-43.

36. Uhrich, K. E. Effect of in vitro degradation on properties of poly(D,L,-lactide-co-glycolide) pertinent to its biological performance / K. E. Uhrich, M. Deng // J. Mater. Scei. — Mater. Med. — 2002. — Vol. 13. — P. 1091-1096.

Попова О.И., д.фарм.н., профессор кафедры фармакогнозии Пятигорскогомедико-фармацевтического института — филиала ГБОУ ВПО ВолгГМУ Минздрава России, г.Волгоград;

Кодониди И.П., д.фарм.н.,доцент кафедры органической химии Пятигорского медико-фармацевтического института — филиала ГБОУ ВПО ВолгГМУ Минздрава России, г.Волгоград.

источник

В настоящее время производство синтетических пластмасс в мире достигло 150 млн. т в год и продолжает расти. Полимерные продукты играют большую роль в промышленности и жизни человека. После использования полимерные промышленные и бытовые отходы попадают в мусорные отвалы. Как быть и что делать с пластмассовым мусором становится глобальной экологической проблемой [1], от решения которой в значительной степени зависит экологическая ситуация в мире.

Для очистки окружающей среды от пластмассовых отходов и снижения антропогенной нагрузки на человека и окружающую среду активно реализуются два основных подхода:

захоронение (хранение отходов на свалках);

Наиболее щадящим способом является утилизация полимерных отходов.

Повторная переработка в некоторой степени решает проблему загрязнения окружающей среды полимерными продуктами. Однако сбор и сортировка полимерных отходов, прежде всего упаковочной тары, приводит к удорожанию получаемых мосле переработки изделий. Кроме того, качество рециклизованного полимера оказывается существенно ниже, чем первичного продукта.

Сжигание и пиролиз, даже при применении методов дожигания и утилизации тепла отходящих газов, также кардинально не улучшают экологическую обстановку.

По мнению специалистов, радикальным решением проблемы «полимерного мусора» является создание и освоение широкой гаммы полимеров, способных при соответствующих условиях биодеградировать на безвредные компоненты [2].

Именно биоразлагаемость высокомолекулярных соединений и будет тем приоритетным направлением, которое позволяет исключить значительное число проблем загрязнения окружающей среды, возникающих при использовании бытовых товаров, а во многих случаях и продукции технического назначения из синтетических полимеров [3].

В настоящее время мировая промышленность в основном ориентирована на использование и переработку практически невозобновляемого углеводородного и каменноугольного сырья. Возможно, эти виды ресурсов будут исчерпаны уже в следующем столетии. Именно поэтому в ряде развитых стран мира проводятся широкие научно-технические исследования по применению растительного возобновляемого сырья для разработки новых видов полимерных материалов. Эти полимеры привлекательны не только с точки зрения используемого для их получения сырья, но и имеющихся у них преимуществ в области утилизации отходов.

Бурное развитие производства таких материалов, первоначально предназначавшихся исключительно для медицинских изделий, позволило разработать подходы к решению глобальной проблемы утилизации твердых полимерных отходов.

К сожалению, в России пока не уделяется должного внимания разработкам такого типа.

Анализ литературных источников в области разработки биоразлагаемых полимеров за последние годы указывает на активное развитие направления производства полимеров на основе гидроксикарбоновых кислот. Столь пристальное внимание к этому классу соединений обусловлено тем, что еще в 1925 г. было установлено, что полигидроксимасляная кислота под воздействием различных видов микроорганизмов разлагается до С02 и Н20. Полиэфиры на основе других гидроксикарбоновых кислот (гликолевой, молочной, валериановой или капроновой) ведут себя аналогично.

Для получения соответствующих полиэфиров указанных кислот используются их димерные производные — гликолиды, лактиды в случае гликолевой и молочной кислот, либо у — или е-лактоны для валериановой и капроновой кислот [4].

Среди биодеградируемых материалов полимолочная кислота, синтезируемая из мономеров, получаемых путем микробиологической переработки растительного сырья (ферментативным брожением декстрозы сахара или мальтозы, сусла зерна или картофеля), занимает лидирующее производство (140 тыс. т в 2002 г.; 250 — в 2005 г., 400 тыс. т в 2007 г.).

Важным достоинством полимолочной кислоты (полилактида) является то, что этот прозрачный, бесцветный термопластичный полимер может быть переработан всеми способами, применяемыми для переработки известных термопластов. Из листов можно термоформовать подносы, тарелки, упаковку для пищевых продуктов, имплантаты для медицины. Он опробован также в качестве полимера для получения волокон, пленок, связующего для целлюлозных нетканых материалов [5]. Несмотря на все перечисленные достоинства полилактида, широкое внедрение его в качестве полимера бытового и технического назначения до последнего времени сдерживается небольшими объемами выпуска, низкой производительностью технологических линий и, как следствие, высокой стоимостью продукции. В связи с этим особое внимание в настоящее время разработчики полиэфиров уделяют вопросам удешевления получаемых биоразлагаемых продуктов за счет создания высокопроизводительных технологических процессов. Активную работу в совершенствовании технологии производства молочной кислоты проводят фирмы Cargill Inc. (США) и PURAC (Испания) [3].

Молочная (2-гидроксипропи-оновая кислота), СН, — СН (ОН) — COOH) существует в L — и D-изомерных формах. Кроме того, существует ее рацемическая форма. Продукт, получаемый в процессах ферментации (брожения), содержит до 99,5 % 1-изо-мера и 0,5 % Д-изомера [6]. Молочная кислота, представляющая собой бесцветные кристаллы, гигроскопична, легко образует циклический димер — лактид (рис.1).

Лактид также существует в виде оптически активных L — и /) — форм и неактивного рацемата и может полимеризоваться с образованием высокомолекулярных полимеров. Однако высокомолекулярные полилактиды, полученные из оптически неактивных или оптически малоактивных лактидов, вследствие случайной ориентации заместителей в цепи не обнаруживают кристалличности. Они отличаются высокой растворимостью в различных органических растворителях/ низкой температурой плавления, хорошей термопластичностью и не используются для получения волокон. Изготовление высокомолекулярных волокнообразующих полилактидов возможно лишь из оптически активных мономеров.

Поли-Х-лактид (PLA) — полимер с высокой степенью кристалличности, достигающей 70 — 80 %, со средней плотностью 1,270 г/см 1 при плотности аморфных и кристаллических областей 1,248 и 1,290 г/см 3 соответственно [6], с температурой стеклования 48,5°С. Термоокислительная деструкция поли-i-лактида начинается при 240 — 250 «С. Он растворим во многих органических растворителях, таких, как хлорированные алифатические и ароматические углеводороды, ацетонитрил, диок-сан, тетрагидрофуран. Полилактид не растворим в воде и в водно-спиртовых смесях, не токсичен и не вызывает тканевой реакции отторжения [7J. Полилактид относится к алифатическим полиэфирам и к биосовместимым термопластикам.

Наиболее часто используется первый метод вследствие более высокой чистоты исходного димера.

В основе процесса лежит получение дилактида, а затем его полимеризация. Первичная стадия синтеза включает получение предконденсата, который затем термически деполимеризуется до дилактида. Свойства результирующего волокнообразующего полилактида зависят в большой степени от чистоты дилактидного мономера, что требует его тщательной очистки. Полимеризация дилактида происходит с раскрытием цикла, и образующийся линейный полилактид содержит примерно 5 % непрореагировавшего мономера. Такой полимер может подвергаться гидролизу, если его использовать для дальнейшей переработки в волокна или изделия. Поэтому PLA подвергается обязательной очистке от мономера.

Значительный интерес для получения биоразлагаемых полимеров представляют сополимеры молочной кислоты, поскольку появляется возможность создания полимеров с регулируемой скоростью биодеструкции. Особенно это важно для полимеров и волокон на их основе, используемых в медицине.

Волокна, полученные из PLA, не уступают по прочности волокнам, полученным из других полиэфиров, в частности из полигликолида, и вследствие гидрофобной природы исходного полимера они устойчивы к гидролизу даже в кипящей воде. Продукты биодеструкции волокон из PLA (молочная кислота) являются нормальным метаболитом и не оказывают токсического воздействия на организм. Однако скорость биоразложения (период полураспада равен 168 дням) PLA достаточно велика и не позволяет его использовать в общей и специальной хирургии для ушивания мягких тканей, особенно в случае применения в качестве хирургического материала с короткими (до 1 года) сроками рассасывания. Использование PLA в медицине ограничено изготовлением костных протезов, костных винтов и имплантантов для костных тканей. Текстильные материалы из PLA обладают хорошими характеристиками, из них изготовляют комфортное белье и модную одежду, занавески и драпировочные материалы. Они не содержат вредных примесей, вызывающих аллергическую реакцию при контакте с телом человека [8J.

Введение сомономера в PLA позволяет существенно сократить время биологической деструкции полимера и расширить область его применения, прежде всего в медицине, производстве упаковочной тары, в качестве пластификаторов и связующих.

Наиболее перспективным сомономером, например, для изделий медицинской техники представляется гликолид, который может быть получен из гликолевой или монохлоруксусной кислот.

Ранее во ФГУП «ВНИИСВ» были разработаны биодеградируемые шовные хирургические материалы на основе полигликолила, которые выпускаются в небольших объемах.

Полигликолид, являясь простейшим полиэфиром, в котором благодаря близкому расположению сложноэфирных групп сильно выражены межмолекулярные взаимодействия, обладает высокой степенью кристалличности, а также чрезвычайной гидролитической нестабильностью. Полигликолид обладает приемлемыми сроками рассасывания в живом организме (6 — 12 мес), однако вследствие гидролитической нестабильности довольно быстро (до 20 сут) теряет около 60 % прочности, что накладывает определенные ограничения на его использование в качестве хирургического материала.

Поэтому значительный интерес представляет синтез сополимеров различного состава на базе молочной и гликолевой кислот (или гликолида и лактида), в которых сочетаются свойства этих двух полимеров и имеется возможность контролировать скорость биодеструкции.

Полимеры могут быть получены с различными молекулярными массами и структурой макромолекул, позволяющей варьировать степень взаимодействия между макромолекулами. На основе лактида и гликолида возможно получение целого семейства сополиэфиров, свойства которых будут отличаться в пределах определенного диапазона.

В литературе отмечается высокая склонность гликолида к полимеризации по сравнению с лактидом. Исследования относительной реакционной способности лактида и гликолида в процессе их сополимеризации показали, что для цепи растущего гликолида втрое более предпочтительно присоединение другой единицы гликолида, а для цепи растущего лактида в пять раз предпочтительнее присоединение гликолида. То и другое ведет к образованию блоков гликолида, разделенных единичными лактидными остатками. Поэтому сополимеры гликолевой и молочной кислот имеют широкий диапазон составов, причем гликолид полимеризуется преимущественно при низких конверсиях, а лактид встраивается в большей степени, когда гликолид уже исчерпан [10].

С увеличением содержания лактидных фрагментов в макромолекуле его сополимера с гликолидом повышается гидрофобность, но уменьшается кристалличность. Изменяя количество и время введения мономера, можно целенаправленно изменять тонкую структуру материала и его свойства, например время полной деструкции полимера.

Сополимеры гликолида и лактида разлагаются путем простого гидролиза до гликолевой и молочной кислот, которые перерабатываются (в случае медицинского применения) через обычные метаболические пути. Скорость гидролиза зависит от таких факторов, как размер и гидрофильность полимерного имплантанта, мономерность состава, степень кристалличности полимера, рН и температура окружающей среды. Сроки разложения меньше для полимеров с более низкой молекулярной массой, большей гидрофильностью и большим содержанием аморфной части, а также при более высоком содержании гликолида в сополимерах.

В процессе отработки синтеза биоразлагаемых сополимеров использовались лактоны, полученные на стендовой установке пиролиза. Лактоны очищались от примесей мономеров (молочной и гликолевой кислот) двух-трехкратной перекристаллизацией осушенным этилацетатом и от олигомерных оксикислот холодной экстракцией сухим этилацетатом. По результатам потенциометрического титрования содержание карбоксильных групп примесей в циклических димерах не превышало 2-10 3 моль/кг, температура плавления полученных мономеров составляла 79°С для гликолида и 94°С для L-лактида, что соответствует разработанным техническим требованиям к их качеству и температурным характеристикам [11].

Сополимеризацию i-лактида с гликолидом проводили в ампулах из термостойкого стекла при температуре 140, 150, 160, 170°С при следующих соотношениях гликолид: лактид соответственно: 1,68: 6,70; 2,74: 6,10; 4,9: 4,9; 9,55: 2,33 моль/л. В качестве инициатора процесса использовали хлорид олова (SnCl2-2HiO), а регулятора молекулярной массы — лауриловый спирт (CHj-fCH),,-CHiOH) в виде 1 % растворов в серном эфире. После загрузки реагентов систему трижды вакуумировали и заполняли азотом, а затем помещали в термостат с температурой 100 С. По окончании расплавления реакционной смеси начинали процесс сополимеризации в выбранном диапазоне температур. В ходе эксперимента были проведены исследования влияния температуры процесса, состава реакционной среды, концентрации инициатора и регулятора молекулярной массы на кинетику процесса сополимеризации и свойства получаемых полимеров.

Читайте также:  20 капсул содержащих железа лактат

Выход сополимера и кинетику расхода мономеров в ходе процесса синтеза исследовали методами гравиметрии и ЯМР-спектроскопии. Спектры ЯМР-образца сополилактида, полученного при соотношении концентраций 1-лактид: гликолид, равном 6,1: 2,74, снимали в диметилсульфоксида при 100 «С на спектрометре «Tesla BS-497» с рабочей частотой 100 МГц. Химические сдвиги определяли по тетраметилсилану и растворителю как внутренним стандартам. Результаты исследования микроструктуры гликолида с лакти-дом представлены на рис.2 и в табл. I.

Для интерпретации спектров полимеризующейся системы использовали литературные и экспериментальные значения химических сдвигов сигналов мономеров. В ЯМР-спектре сополимера гликолида с L-лакти-дом присутствуют сигналы, имеющие химические сдвиги гомополимеров гликолида и L-лактида, а также два новых сигнала (синглет 4,81 млн доли и квартет 5,27 млн доли), которые следует отнести к сигналам протонов (см. рис.1), соответствующих перекрестному акту роста ц$пи (а, в). Можно предположить, что химические сдвиги метильных протонов лактида в перекрестном акте и в последовательности лактидных звеньев отличаются, по-видимому, очень мало (т.е. с’=с):

Путем интегрирования сигналов ЯМР-спектров сополимеров, выделенных на различных стадиях сополимеризации, проанализировано изменение их микроструктуры в ходе процесса. Обнаружено, что содержание лактидных СН-групп в сополимере, относящихся к перекрестным актам роста цепи, по сравнению с общим содержанием этих групп на ранних стадиях сополимеризации выше, чем в конце процесса. Это хорошо согласуется с данными о кинетике расхода сомономеров в исследуемой системе.

Образующиеся при синтезе сополимеры имеют блочную структуру, причем близкий по составу к чередующемуся сополимер можно получить в случае сополимеризации смеси с соотношением 1-лактид: гликолид, равным 6,1: 2,74, причем процесс должен быть остановлен сразу после конверсии гликолида.

Поэтому в качестве базового соотношения 1-лактид: гликолид было выбрано указанное соотношение. Кроме того, данные по биоабсорбции сополилактидов в воде при t = 37 *С указывают на тот факт, что наименьшими сроками разложения обладают именно сополимеры лактида и гликолида в диапазоне концентраций i-лактида 25 — 75 % по массе.

На основании результатов выполненных лабораторных исследований были определены условия получения образцов сополилактидов на экспериментальной лабораторной установке, которая включает в себя реактор из коррозионно-стойкой стали объёмом 0,01 м снабжённый ленточной мешалкой со шнековым наконечником и фильерой, и узел литья и гранулирования.

После загрузки реакционной смеси в реактор аппарат герметизировали и, с целью удаления кислорода и влаги воздуха, попеременно вакуумировали и азотировали. После этого включали электрообогрев и мешалку. Устанавливали число оборотов мешалки 5 — 10 мин. Расплавление реакционной смеси проводили при температуре 100 «С под азотной подушкой в течение 30 — 40 мин. По окончании расплавления температуру в аппарате повышали до рабочей и начинали синтез сополимера. О ходе процесса судили по изменению расхода энергии (AU) на перемешивание реакционной смеси. По достижении AU равной 0,2 — 0,25 та сополимер выгружали через фильеру давлением азота до 3 кгс/см ! при работающей мешалке и гранулировали.

Процесс синтеза экспериментальных образцов сополилактидов проводили при температуре 172 ±2°С. Состав реакционной смеси, г: 670 /. — лактид (75 %); 220 гликолил (25 %). В качестве инициатора реакции использовали хлорид олова SnCl) — 2HiO (масса 0,225 г), а регулятора — лауриловый спирт (9,0 г).

Таким образом, введение в состав PLA гликолидных звеньев приводит к существенному сокращению сроков биоабсорбции в биологической среде сополимеров на базе лактонов молочной и гликолевой кислот по сравнению с гомопол и мерами.

В настоящее время исследования продолжаются в направлении разработки технологии и аппаратурного оформления процесса получения PLA и ее сополимеров.

В заключение следует подчеркнуть, что для успешного решения проблемы создания в Российской Федерации производства биоразлагаемых полимеров необходима консолидация всех исследователей, работающих в данной области, и осуществление серьезных инвестиций, в том числе государственных.

Исследованы варианты синтеза сополимеров из гликолида и L-лактида в диапазоне температур 140 — 170 «С и при соотношении концентраций (L-лактид: гликолид) равном 6,7: 1,68; 6,1: 2,74; 4,9: 4,9; 2,33: 9,55 моль/л в присутствии инициатора процесса хлорида олова SnCI2*2HiO и регулятора молекулярной массы — лаурилового спирта. Полученные результаты подтверждают блочную структуру сополимеров.

Отработан способ синтеза сополилактида соотношения L-лактид: гликолид = 6,1: 2,74. Получены образцы полимера со среднемассовой молекулярной массой 27 000 — 28 000 при конверсии продукта 92 — 94 % и образцы многофиламентной нити на их основе.

источник

способы получения трансдермальных терапевтических систем на основе сополимеров молочной и гликолевой кислот (варианты)

Изобретение относится к медицине. Описан способ получения трансдермальной терапевтической системы на основе сополимеров молочной и гликолевой кислот, включающий растворение сополимера лактид-гликолида и фармакологически активного вещества в органическом растворителе, перемешивание полученного раствора до полного растворения, высушивание горячим воздухом до полного высыхания и постоянной массы с получением пленки, разрезание полученной пленки на части и упаковку, при этом соотношение лактида и гликолида в пределах от 95:5 до 5:95 (варианты). Техническим результатом изобретения является получение трансдермальной терапевтической системы на основе сополимеров молочной и гликолевой кислот, которая явялется биодеградируемой. 4 н. и 29 з.п. ф-лы, 1 ил., 3 табл., 6 пр.

Изобретение относится к области фармацевтической промышленности, в частности к способам получения трансдермальных терапевтических систем на основе сополимеров молочной и гликолевой кислот.

Трансдермальная терапевтическая система (ТТС) представляет собой дозированную лекарственную форму для наружного применения в виде пластырей, нетканого материала или пленок. ТТС способны непрерывно и атравматично подавать в организм лекарственное средство (ЛС) со скоростью, создающей в кровотоке постоянный уровень концентрации ЛС, близкий к оптимальному терапевтическому уровню.

Трансдермальные терапевтические системы являются альтернативой парентеральному и пероральному введению лекарственных средств. По сравнению с пероральным приемом, трансдермальное введение обеспечивает быстрое действие препарата и помогает избежать снижения его активности в результате прохождения через печень. Кроме того, при таком введении появляется возможность снизить частоту назначения лекарства, уменьшить необходимые дозы и при этом избежать колебаний его концентрации в крови, а при развитии нежелательных реакций — немедленно прекратить лечение. Для некоторых лекарств трансдермальная доставка является единственным способом введения.

Задача, положенная в основу создания настоящего изобретения, состоит в дальнейшем совершенствовании трансдермальных терапевтических систем, при этом технический результат, полученный при решении такой задачи, состоит в создании биодеградируемых трансдермальных терапевтических систем на основе сополимеров лактида и гликолида.

Для достижения поставленного результата предлагаются варианты способов получения трансдермальной терапевтической системы (ТТС) на основе сополимеров молочной и гликолевой кислот, первый из которых включает растворение сополимера лактид-гликолида и фармакологически активного вещества в органическом растворителе, перемешивание полученного раствора до полного растворения, высушивание горячим воздухом до полного высыхания и постоянной массы с получением пленки, разрезание полученной пленки на части и упаковку; второй включает растворение сополимера лактид-гликолида и фармакологически активного вещества в органическом растворителе, перемешивание полученного раствора в магнитной мешалке до полного растворения, заливку в устройство подачи, подачу на капилляр напряжением 5-40 кВ, сбор волокна на приемное устройство с получением нетканого материала, разрезание полученного нетканого материала на части и упаковку; третий из вариантов способа включает этап экструдирования сополимера лактид-гликолида с получением нити и последующим изготовлением из нити тканого материала, этап растворения сополимера лактид-гликолида в органическом растворителе, растворение фармакологически активного вещества, смешивание и гомогенизацию таких растворов с получением итогового раствора, и этап погружения в итоговый раствор тканного материала с последующим его охлаждением и сушкой; четвертый из заявленных вариантов способа включает растворение сополимера лактид-гликолида в этилацетате, добавление фармакологически активного вещества в буфере, перемешивание, центрифугирование полученной смеси, удаление супернатанта с растворением осадка в этилацетате, получением суспензии и приготовлением на ее основе спрея.

Предпочтительные, но не обязательные варианты реализации первого, второго и третьего вариантов способа предполагают соотношение лактида и гликолида выбрать в пределах от 95:5 до 5:95, предпочтительно 75:25, наиболее предпочтительно 50:50; использование в качестве сополимера лактид-гликолид-полиэтиленгликоль (ПЭГ) или — лактид-гликолид-поливинилпирролидон (ПВП), где ПЭГ или ПВП имеет молекулярную массу от 400 до 40000 Да; дополнительное использование в качестве пластификаторов веществ из группы -капролактон, сложные эфиры дикарбоновые кислоты, глицерин, в качестве эмульгаторов — веществ из группы полоксамер, твин-80 (полиоксиэтилен-сорбитан моноолеат); использование для создания заданных параметров высвобождения фармакологически активного вещества аэросила и/или диметилсульфоксида, а в качестве органического растворителя -веществ, выбранных из группы, включающей дихлорметан, хлороформ, хлористый метилен, этилацетат, тетрагидрофуран, диметилсульфоксид, диметилформамид, ацетон или их смеси; кроме того, фармакологически активным веществом может являться терапевтическое или диагностическое средство, при этом в случае, если фармакологически активное вещество является терапевтическим средством, его выбирают из группы, включающей ранозаживляющие средства; противомикробные средства; обезболивающие и анестезирующие средства местного действия; противовоспалительные средства; трофические факторы; лекарства для лечения привыкания и злоупотребления лекарственными средствами; лекарства для лечения привыкания и злоупотребления табаком; лекарства для лечения привыкания и злоупотребления алкоголем; гормональные средства; стимуляторы; лекарства против ожирения; кардиотропные средства, в случае, если фармакологически активное вещество является диагностическим средством, то это средство для диагностики в радиационной медицине и/или лучевой терапии; следует также отметить, что для предотвращения изменения рН в кислую сторону первый-третий варианты заявленного способа могут дополнительно характеризоваться использованием волластонита или биогласса (bioglass 45S5).

Изобретение иллюстрируется фиг.1 с графиком регенерации тканей.

Возможность достижения поставленного результата обусловлена тем, что сополимеры лактида и гликолида являются поддающимися биологическому разложению полимерами, цепи которых состоят из звеньев молочной и гликолевой кислот, процентное содержание которых оказывает влияние на скорость разложения и, как следствие, высвобождения фармакологически активного вещества. Молекула полилактида является оптически активной, D и L-изомеры могут присутствовать в любых пропорциях, исключением является сополимер L-лактида и D-лактида с относительным содержанием звеньев 50/50. Молекулярная масса сополимеров может варьироваться от 30000 до 100000 Да (массы определены методом гель-проникающей хроматографией). Также возможен синтез олигомеров с молекулярной массой от 2500 до 10000 Да. Для повышения биодеградируемости могут использоваться сополимеры, содержащие помимо сополимеров полилактидов и/или полигликолидов полиэтиленгликоли (ПЭГ) различной молекулярной массы, начиная от 400 Да до 40000 Да.

В общем виде, согласно заявленным вариантам способа, могут быть получены трансдермальные терапевтически системы (ТТС), на основе сополимера лактид-гликолида и, при необходимости, дополнительно полиэтиленгликоля, и/или поливинилпиролидона различной молекулярной массы, и/или пластификатора, и/или поверхностно-активных веществ, и/или аэросила, и/или диметилсульфоксида (ДМСО), в который добавлено фармакологически активное вещество, при этом в общем виде такие способы подразделяются на:

— метод испарения органического растворителя;

— метод получения композитных материалов;

Пример 1. Получение биодеградируемой ТТС методом испарения органического растворителя.

1.1. Растворяли 195 мг сополимера лактид-гликолида (50:50; М=10000 Да) и 10 мг фармакологически активного вещества в 10 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, затем раствор сушили горячим воздухом до полного высыхания, после чего помещали в вакуумный шкаф, сушили от остатков ацетона до постоянной массы. Полученную пленку разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.

1.2. Растворяли 486 мг сополимера лактид-гликолид- -капролактона (71:22:7; М=5000 Да) и 15 мг фармакологически активного вещества в 10 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, затем раствор сушили горячим воздухом до полного высыхания, после чего помещали в вакуумный шкаф и сушили от остатков ацетона до постоянной массы. Полученную пленку разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.

1.3. Растворяли 972 мг сополимера лактид-гликолид-ПЭГ (50:45:5; М=50000 Да; М ПЭГ =1000 Да) и 20 мг фармакологически активного вещества в 60 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, затем раствор сушили горячим воздухом до полного высыхания, после чего помещали в вакуумный шкаф, сушили от остатков ацетона до постоянной массы. Полученную пленку разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.

1.4. Растворяли 972 мг сополимера лактид-гликолид-ПЭГ- -капролактона (70:20:5:5; М=60000 Да; М ПЭГ 1000 Да) и 20 мг фармакологически активного вещества в 100 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, затем раствор сушили горячим воздухом до полного высыхания, после чего помещали в вакуумный шкаф и сушили от остатков ацетона до постоянной массы. Полученную пленку разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.

1.5. Растворяли 195 мг сополимера лактид-гликолида (50:50; М=70000 Да), 10 мг глицерина и 10 мг фармакологически активного вещества в 30 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, затем раствор сушили горячим воздухом до полного высыхания, после чего помещали в вакуумный шкаф и сушили от остатков ацетона до постоянной массы. Полученную пленку разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.

1.6. Растворяли 195 мг сополимера лактид-гликолида (50:50; М=80000 Да), 20 мл полоксамера 188 и 15 мг фармакологически активного вещества в 10 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалки до полного растворения, затем раствор сушили горячим воздухом до полного высыхания, после чего помещали в вакуумный шкаф и сушили от остатков ацетона до постоянной массы. Полученную пленку разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.

1.7. Растворяли 195 мг сополимера лактид-гликолида (50:50; М=90000 Да), 10 мг аэросила и 10 мг фармакологически активного вещества в 10 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, затем раствор сушили горячим воздухом до полного высыхания, после чего помещали в вакуумный шкаф и сушили от остатков ацетона до постоянной массы. Полученную пленку разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.

1.8. Растворяли 195 мг сополимера лактид-гликолида (50:50; М=100000 Да), 10 мл диметилсульфоксид (ДМСО) и 10 мг фармакологически активного вещества в 10 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, затем раствор сушили горячим воздухом до полного высыхания, после чего помещали в вакуумный шкаф и сушили от остатков ацетона до постоянной массы. Полученную пленку разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.

Пример 2. Получение биодеградируемой ТТС методом электроспиннинга.

2.1. Растворяли 1 г сополимера лактид-гликолида (50:50; М=35000 Да) и 10 мг фармакологически активного вещества в 10 мл этилацетата; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, заливали в устройство подачи, подавали на капилляр напряжением 20 кВ и собирали волокна на приемное устройство. Полученный нетканый материал разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.

2.2. Растворяли 1 г сополимера лактид-гликолид- -капролактона (75:20:5; М=40000 Да) и 15 мг фармакологически активного вещества в 10 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, заливали в устройство подачи, подавали на капилляр напряжением 20 кВ и собирали волокна на приемное устройство. Полученный нетканый материал разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.

2.3. Растворяли 1 г сополимера лактид-гликолид-ПЭГ (50:45:5; М=50000 Да; М ПЭГ =1000 Да) и 10 мг фармакологически активного вещества в 10 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, заливали в устройство подачи, подавали на капилляр напряжением 20 кВ и собирали волокна на приемное устройство. Полученный нетканый материал разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.

2.4. Растворяли 1,0 г сополимера лактид-гликолид-ПЭГ- -капролактона (70:20:5:5; М=60000 Да; М ПЭГ =1000 Да) и 10 мг фармакологически активного вещества в 10 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, заливали в устройство подачи, подавали на капилляр напряжением 20 кВ и собирали волокна на приемное устройство. Полученный нетканый материал разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.

2.5. Растворяли 1 г сополимера лактид-гликолида (50:50; М=70000 Да), 0,2 мг глицерина и 10 мг фармакологически активного вещества в 10 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, заливали в устройство подачи, подавали на капилляр 20 кВ и собирали волокна на приемное устройство. Полученный нетканый материал разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.

2.6. Растворяли 1 г сополимера лактид-гликолида (50:50; М=80000 Да), 0,2 мл полоксамера 188 и 10 мг фармакологически активного вещества в 10 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, заливали в устройство подачи, подавали на капилляр напряжением 20 кВ и собирали волокна на приемное устройство. Полученный нетканый материал разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.

2.7. Растворяли 1 г сополимера лактид-гликолида (50:50; М=90000 Да), 0,2 мг аэросила и 10 мг фармакологически активного вещества в 10 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, заливали в устройство подачи, подавали на капилляр напряжением 20 кВ и собирали волокна на приемное устройство. Полученный нетканый материал разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.

2.8. Растворяли 1 г сополимера лактид-гликолида (50:50; М=100000 Да), 0,2 мл ДМСО и 10 мг фармакологически активного вещества в 10 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, заливали в устройство подачи, подавали на капилляр напряжением 20 кВ и собирали волокна на приемное устройство. Полученный нетканый материал разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.

Пример 3. Получение биодеградируемой ТТС методом композитных материалов.

3.1. 5 г сополимера лактид-гликолида (50:50; М=50000 Да) засыпали в экструдер, нагретый до 100°C; затем на выходе из фильеры нить собирали на барабан и на ткацком станке готовили тканый материал.

Растворяли 196 мг сополимера лактид-гликолида (50:50; М=40000 Да) в 30 мл хлороформа; 10 мг фармакологически активного вещества растворяли в 4 мл воды очищенной; смешивали полученные растворы и гомогенизировали при 16000 об/мин. В полученный раствор опускали тканный материал, полученный на ткацком станке и сразу же охлаждали жидким азотом при -196°C. Полученный композитный материал с фармакологически активным веществом помещали в лиофильную сушку и сушили при -85°C.

3.2. 5 г сополимера лактид-гликолида (75:25; М=50000 Да) засыпали в экструдер, нагретый до 100°C; затем на выходе из фильеры нить собирали на барабан и на ткацком станке готовили тканый материал.

Растворяли 196 мг сополимера лактид-гликолида (50:50; М=60000 Да) в 30 мл хлороформа; 10 мг фармакологически активного вещества растворяли в 4 мл воды очищенной; смешивали полученные растворы и гомогенизировали при 16000 об/мин. В полученный раствор опускали тканный материал и сразу же охлаждали жидким азотом при -196°C. Полученный композитный материал с фармакологически активным веществом помещали в лиофильную сушку и сушили при -85°C.

3.3. 5 г сополимера лактид-гликолид- -капролактона (75:20:5; М=70000 Да) засыпали в экструдер, нагретый до 100°C; затем на выходе из фильеры нить собирали на барабан и на ткацком станке готовили тканый материал.

Растворяли 196 мг сополимера лактид-гликолида (50:50; М=80000 Да) в 30 мл хлороформа; 10 мг фамкакологически активного вещества растворяли в 4 мл воды очищенной; смешивали полученные растворы и гомогенизировали при 16000 об/мин. В полученный раствор опускали тканный материал и сразу же охлаждали жидким азотом при -196°C. Полученный композитный материал с фармакологически активным веществом помещали в лиофильную сушку и сушили при -85°C.

3.4. 5 г сополимера лактид-гликолид-ПЭГ (70:25:5; М=90000 Да; М ПЭГ =1000 Да) засыпали в экструдер, нагретый до 100°C; затем на выходе из фильеры нить собирали на барабан и на ткацком станке готовили тканый материал.

Растворяли 196 мг сополимера лактид-гликолида (50:50; M=30000 Да) в 30 мл хлороформа; 10 мг фармакологически активного вещества растворяли в 4 мл воды очищенной; смешивали полученные растворы и гомогенизировали при 16000 об/мин. В полученный раствор опускали тканный материал и сразу же охлаждали жидким азотом при -196°C. Полученный композитный материал с фармакологически активным веществом помещали в лиофильную сушку и сушили при -85°C.

3.5. 5 г сополимера лактид-гликолид-ПЭГ- -капролактона (70:20:5:5; М=50000 Да; М ПЭГ =1000 Да) засыпали в экструдер, нагретый до 100°C; затем на выходе из фильеры нить собирали на барабан и на ткацком станке готовили тканый материал.

Растворяли 196 мг сополимера лактид-гликолида (50:50; М=30000 Да) в 30 мл хлороформа; 10 мг фармакологически активного вещества растворяли в 4 мл воды очищенной; смешивали полученные растворы и гомогенизировали при 16000 об/мин. В полученный раствор опускали тканный материал и сразу же охлаждали жидким азотом при -196°C. Полученный композитный материал с фармакологически активным веществом помещали в лиофильную сушку и сушили при -85°C.

3.6. 5 г сополимера лактид-гликолида (50:50; М=30000 Да), 0,1 г аэросила засыпали в экструдер, нагретый до 100°C; затем на выходе из фильеры нить собирали на барабан и на ткацком станке готовили тканый материал.

Растворяли 196 мг сополимера лактид-гликолида (50:50; М=60000 Да), в 30 мл хлороформа; 10 мг фармакологически активного вещества растворяли в 4 мл воды очищенной; смешивали полученные растворы и гомогенизировали при 16000 об/мин. В полученный раствор опускали тканный материал и сразу же охлаждали жидким азотом при -196°C. Полученный композитный материал с фармакологически активным веществом помещали в лиофильную сушку и сушили при -85°C.

4. Получение спрея с фармакологически активным веществом на основе сополимеров молочной и гликолевой кислот

5 г сополимера лактид-гликолида растворяют в 20 мл этилацетата, добавляют 20 мг фармакологическиактивного вещества в буфере, интенсивно перемешивают, полученную смесь центрифугируют, удаляют супернатант, осадок растворяют в 40 мл этилацетата, получая суспензию, на основе которой готовят спрей пригодный для распыления на кожу.

Для исследования эффективности полученных трансдермальных терапевтических систем в виде пленок, нетканого материала, пластырей, содержащих сополимер лактид-гликолида и ацексамовую кислоту в качестве ранозаживляющего фармакологически активного вещества, моделировали раневую поверхность удалением у животных шерсти на месте нанесения раны, затем скальпелем вырезался кусок кожи для получения полнослойной раны размером 225 мм 2 .

Для эксперимента использовали взрослых самцов крыс Вистар весом 200-250 г в течении 1 недели выдерживали с целью акклиматизации в клетках группами по 5 особей. Животных делили на 3 группы по 6 животных в каждой группе:

1 группа контрольная; животные со стандартными полнослойными ранами (225 мм 2 ) на боковой поверхности тела, которым на область дефекта не воздействуют никакими физическими и химическими факторами.

2 группа, животные со стандартными полнослойными ранами (225 мм 2 ) на боковой поверхности тела, которым на область дефекта наносят спрей «Пантенол».

3 группа, животные со стандартными полнослойными ранами (225 мм 2 ) на боковой поверхности тела, которым на область дефекта наносят полимерную пленку, содержащую сополимер лактид-гликолида (50:50 М=30000 Да) и ацексамовую кислоту в соответствии с заявленными вариантами способа (фиг.1).

Исследование вели в течение 15 дней. Ежедневно измеряли площадь ран у всех экспериментальных животных. У всех животных были взяты мазки-отпечатки с поверхности ран через 6, 12 и 24 часа. У всех животных была взята биопсия через 5, 10 15 сутки с последующим изготовлением гистологических препаратов по стандартным прописям.

Нижеследующие примеры иллюстрируют также возможность реализации заявленных ТТС с различными фармакологически активными веществами.

Пример 4. Анальгетическая активность веществ, высвобождаемых из ТТС.

Тест «отдергивания хвоста». Животное помещали в индивидуальную пластиковую камеру, хвост погружали на 5 см в воду с температурой 55±1°C. В тесте фиксировали латентный период избавления от болевого раздражителя -период времени (сек), в течение которого животное выдергивало хвост из воды полностью. Максимальное время предъявления болевого раздражителя — 30 сек. Исходную болевую чувствительность определяли как среднее арифметическое из показателей, зафиксированных на 60, 40, и 20 минут до применения ТТС. Латентный период избавления от болевого раздражителя фиксировали через 20, 40, 60 и 120 минут после применения. Анальгетическую активность оценивали по изменению латентного периода реакции по формуле: А=ЛПоп-ЛПисх, где ЛПоп — латентный период избавления после применения ТТС, ЛПисх- среднее арифметическое латентных периодов избавления до применения ТТС.

Проводили аппликацию ТТС самцам нелинейных белых крыс весом 200-300 г. Контрольным животным аппликацию не проводили. Полученные результаты приведены в таблице 1.

Классы МПК: A61K9/22 длительного действия или отличающиеся типом освобождения
A61L15/44 лекарства
A61K47/30 высокомолекулярные соединения
Автор(ы): Хоменко Андрей Юрьевич (RU) , Гайдуков Игорь Олегович (RU) , Седуш Никита Геннадьевич (RU) , Быкова Ирина Витальевна (RU) , Ульянов Андрей Михайлович (RU) , Балабаньян Вадим Юрьевич (RU)
Патентообладатель(и): Хоменко Андрей Юрьевич (RU),
Гайдуков Игорь Олегович (RU),
Седуш Никита Геннадьевич (RU),
Быкова Ирина Витальевна (RU),
Ульянов Андрей Михайлович (RU),
Балабаньян Вадим Юрьевич (RU)
Приоритеты:
Таблица 1
Испытуемый образец Отдергивание хвоста (изменение чувствительности, сек)
20 мин 40 мин 60 мин 90 мин 120 мин
Контроль 0.5±0.1 0.5±0.1 0.3±0.1 0.2±0.1 -0.1±0.1
ТТС, полученная методом испарения 1 мг/кг 11±1.2* 12.4±1.6* 12.8±1.4* 6.7±0.7* 4.5±0.3*
ТТС, полученная методом электроспиннинга 1 мг/кг 5,7±0.7* 7.5±0.8* 5.3±0.6* 4.1±0.5* 4.3±0.4*
ТТС, представляющая собой композитный материал 1 мг/кг 4,7±0.9* 5.2±1.4* 4.3±0.7* 2.1±0.6 0.2±0.1
фармакологически активное вещество — индометацин 10 мг/кг 4.2±1.6* 3.9±1.2* 2.9±1.9 1.9±1.2 0.7±0.3
* — достоверность по сравнению с контролем при Р 2 23 23 24 23
Bacillus anthracoides 96 15 13 16 17

Критерий Крускала-Уоллиса Р>0,05

Более 10 — высокая активность, 10 — умеренная активность, менее 10 — отсутствие активности.

Результаты эксперимента свидетельствуют о противомикробной активности активного компонента, входящего в состав ТТС. Противомикробная активность в форме ТТС не уступает по величине противомикробной активности хлорамфеникола.

1. Способ получения трансдермальной терапевтической системы на основе сополимеров молочной и гликолевой кислот, включающий растворение сополимера лактид-гликолида и фармакологически активного вещества в органическом растворителе, перемешивание полученного раствора до полного растворения, высушивание горячим воздухом до полного высыхания и постоянной массы с получением пленки, разрезание полученной пленки на части и упаковку, при этом соотношение лактида и гликолида выбирают в пределах от 95:5 до 5:95, предпочтительно 75:25, наиболее предпочтительно 50:50.

2. Способ по п.1, в котором используют сополимер лактид-гликолид-полиэтиленгликоль (ПЭГ), где ПЭГ имеет молекулярную массу от 400 до 40000 Да.

3. Способ по п.1, в котором дополнительно используют в качестве пластификаторов вещества из группы -капролактон, сложные эфиры дикарбоновые кислоты, глицерин, поливинилпирролидоны различной молекулярной массы.

4. Способ по п.1, в котором дополнительно используют в качестве эмульгаторов вещества из группы полоксамер, твин-80 (полиоксиэтилен-сорбитан моноолеат).

5. Способ по п.1, в котором дополнительно для создания заданных параметров высвобождения фармакологически активного вещества используют аэросил и/или диметилсульфоксид.

6. Способ по п.1, в котором в качестве органического растворителя используют вещество, выбранное из группы, включающей дихлорметан, хлороформ, хлористый метилен, этилацетат, тетрагидрофуран, диметилсульфоксид, диметилформамид, ацетон или их смеси.

7. Способ по п.1, в котором фармакологически активным веществом является терапевтическое или диагностическое средство.

8. Способ по п.7, в котором фармакологически активное вещество является терапевтическим средством, выбранным из группы, включающей ранозаживляющие средства; противомикробные средства; обезболивающие и анестезирующие средства местного действия; противовоспалительные средства; трофические факторы; лекарства для лечения привыкания и злоупотребления лекарственными средствами; лекарства для лечения привыкания и злоупотребления табаком; лекарства для лечения привыкания и злоупотребления алкоголем; гормональные средства; стимуляторы; лекарства против ожирения; кардиотропные средства.

9. Способ по п.7, в котором фармакологически активное вещество является диагностическим средством для диагностики в радиационной медицине и/или лучевой терапии.

10. Способ по любому из пп.1-9, в котором дополнительно используют волластонит или биогласс для предотвращения изменения рН в кислую сторону.

11. Способ получения трансдермальной терапевтической системы на основе сополимеров молочной и гликолевой кислот, включающий растворение сополимера лактид-гликолида и фармакологически активного вещества в органическом растворителе, перемешивание полученного раствора в магнитной мешалке до полного растворения, подачу на капилляр напряжением 5-40 кВ, сбор волокна на приемное устройство с получением нетканого материала, разрезание полученного нетканого материала на части и упаковку.

12. Способ по п.11, в котором соотношение лактида и гликолида выбрано в пределах от 95:5 до 5:95, предпочтительно 75:25, наиболее предпочтительно 50:50.

13. Способ по п.11, в котором используют сополимер лактид-гликолид-ПЭГ или ПВП, где ПЭГ или ПВП имеют молекулярную массу от 400 до 40000 Да.

14. Способ по п.11, в котором дополнительно используют в качестве пластификаторов вещества из группы -капролактон, сложные эфиры дикарбоновые кислоты, глицерин.

15. Способ по п.11, в котором дополнительно используют в качестве эмульгаторов вещества из группы полоксамер, твин-80 (полиоксиэтилен-сорбитан моноолеат).

16. Способ по п.11, в котором дополнительно для создания заданных параметров высвобождения фармакологически активного вещества используют аэросил и/или диметилсульфоксид.

17. Способ по п.11, в котором в качестве органического растворителя используют вещество, выбранное из группы, включающей дихлорметан, хлороформ, хлористый метилен, этилацетат, тетрагидрофуранэтилацетат или ацетон.

18. Способ по п.11, в котором фармакологически активным веществом является терапевтическое или диагностическое средство.

19. Способ по п.18, в котором фармакологически активное вещество является терапевтическим средством, выбранным из группы, включающей ранозаживляющие средства; противомикробные средства; обезболивающие и анестезирующие средства местного действия; противовоспалительные средства; трофические факторы; лекарства для лечения привыкания и злоупотребления лекарственными средствами; лекарства для лечения привыкания и злоупотребления табаком; лекарства для лечения привыкания и злоупотребления алкоголем; гормональные средства; стимуляторы; лекарства против ожирения; кардиотропные средства.

20. Способ по п.18, в котором фармакологически активное вещество является диагностическим средством для диагностики в радиационной медицине и/или лучевой терапии.

21. Способ по любому из пп.11-20, в котором дополнительно используют волластонит или биогласс для предотвращения изменения рН в кислую сторону.

22. Способ получения трансдермальной терапевтической системы на основе сополимеров молочной и гликолевой кислот, включающий этап экструдирования сополимера лактид-гликолида с получением нити и последующего изготовления из нити тканого материала, этапы растворения сополимера лактид-гликолида в органическом растворителе, растворения фармакологически активного вещества, смешивание и гомогенизацию полученных растворов с получением итогового раствора и этап погружения в итоговый раствор тканого материала с последующим его охлаждением и сушкой.

23. Способ по п.22, в котором соотношение лактида и гликолида выбрано в пределах от 95:5 до 5:95, предпочтительно 75:25, наиболее предпочтительно 50:50.

24. Способ по п.22, в котором используют сополимер лактид-гликолид-ПЭГ, где ПЭГ имеет молекулярную массу от 400 до 40000 Да.

25. Способ по п.22, в котором дополнительно используют в качестве пластификаторов вещества из группы -капролактон, сложные эфиры дикарбоновые кислоты, глицерин.

26. Способ по п.22, в котором дополнительно используют в качестве эмульгаторов вещества из группы полоксамер, твин-80 (полиоксиэтилен-сорбитан моноолеат).

27. Способ по п.22, в котором дополнительно для создания заданных параметров высвобождения фармакологически активного вещества используют аэросил и/или диметилсульфоксид.

28. Способ по п.22, в котором в качестве органического растворителя используют вещество, выбранное из группы, включающей дихлорметан, хлороформ, хлористый метилен, этилацетат, тетрагидрофуранэтилацетат или ацетон.

29. Способ по п.22, в котором фармакологически активным веществом является терапевтическое или диагностическое средство.

30. Способ по п.29, в котором фармакологически активное вещество является терапевтическим средством, выбранным из группы, включающей ранозаживляющие средства; противомикробные средства; обезболивающие и анестезирующие средства местного действия; противовоспалительные средства; трофические факторы; лекарства для лечения привыкания и злоупотребления лекарственными средствами; лекарства для лечения привыкания и злоупотребления табаком; лекарства для лечения привыкания и злоупотребления алкоголем; гормональные средства; стимуляторы; лекарства против ожирения; кардиотропные средства.

31. Способ по п.29, в котором фармакологически активное вещество является диагностическим средством для диагностики в радиационной медицине и/или лучевой терапии.

32. Способ по любому из пп.22-31, в котором дополнительно используют волластонит или биогласс для предотвращения изменения рН в кислую сторону.

33. Способ получения трансдермальной терапевтической системы на основе сополимеров молочной и гликолевой кислот, включающий растворение сополимера лактид-гликолида в этилацетате, добавление фармакологически активного вещества в буфере, перемешивание, центрифугирование полученной смеси, удаление супернатанта с растворением осадка в этилацетате, получение суспензии и приготовление на ее основе спрея.

источник

Среди продуктов биотехнологии биоразлагаемыми полимерами являются – полилактид, полимолочная кислота (PLA), полигликолевая кислота (PGA), гиалуро́новая кислота́ и другие. Полилакти́д (ПЛА) — биоразлагаемый, биосовместимый, термопластичный, алифатический полиэфир,мономером которого является молочная кислота. Сырьем для производства служат ежегодно возобновляемые ресурсы, такие как кукуруза и сахарный тростник. Молекулярная формула — (C3H4O2)n. CH3CH(OH)COOH — молочная кислота. Лактиды, циклич. сложные эфиры a-гидроксикарбоновых к-т, содержащие две и более группировки —С(О)—О.

Основным мономером для синтеза полимолочной кислоты является молочная (2-гидроксипропионовая) кислота, существующая в двух оптически активных конфигурациях. L(+)-изомер вырабатывается человеческим организмом и организмами других млекопитающих; бактериальные системы (например, Lactobacilli) способны вырабатывать как D(–), так и L(+)- энантиомеры [55]. Синтез полимера ведут, как правило, либо из L(+)-молочной кислоты, либо из рацемической смеси D(–) и L(+) изомеров.

Все существующие способы получения ПМК основываются на поликонденсация молочной кислоты или на полимеризация лактида. В промышленности часто используется их комбинация.

На начальных стадиях практически всех разработанных в н.вр. способах получения ПМК используется поликонденсация молочной кислоты (W.Н.Carothers, G.L.Dorough, F.J.van Natta, Journal American Chemical Society, 1932, том 54, с.761). Этот процесс – равновесный, и без специальных условий (в частности, удаления реакционной воды) можно получить только хрупкий стеклообразный олигомер с неважными физико-механическими характеристиками. Поликонденсацией молочной кислоты можно получать только низкомолекулярный полилактид, так как в процессе выделяется побочный продукт — вода, отвести которую из реакции сложно, и, поэтому, растущая полимерная цепь разрушается. Низкомолекулярные полилактиды можно рассматривать как продукты поликонденсации молочной кислоты.

Один из способов получения ПМК с высокой молекулярной массой заключается в удаление реакционной воды азеотропным способом (азеотропной поликонденсации) позволяет синтезировать полимолочную кислоту с достаточно высокой молекулярной массой из молочной кислоты напрямую (способ I). Этот метод сравнительно недорог, не требует каких-либо специальных добавок, однако в получаемом полимере могут содержаться примеси токсичного катализатора. От следов этого катализатора избавляются осаждением или фильтрованием после добавления сильных кислот (например, серной)

В основе других способов (II и III) получения полимолочной кислоты с высокой молекулярной массой лежит предварительный синтез олигомера с достаточным количеством концевых гидроксильных и карбоксильных групп. Так, по способу II полимолочную кислоту (Mw>100 кДа) синтезируют из олигомера с Mw=2÷10 кДа и модифицированными концевыми группами. Для этого из продукта поликонденсации молочной кислоты отдельно получают олигомер с концевыми гидроксильными группами и отдельно – с концевыми карбоксильными. Олигомер с концевыми гидроксильными группами синтезируют с использованием малых количеств полифункциональных ОН-содержащих веществ (2-бутен-, 4-диол, глицерин или 1,4-бутандиол [55]), а олигомер с концевы-ми карбоксильными – при добавлении малых количеств карбоновых кислот (малеиновая, янтарная, адипиновая или итаконовая [61-63]) или их ангидридов (малеиновый или янтарный [63]). Полученные олигомеры подвергают поликонденсации между собой с получением полимолочной кислоты, причем молекулярная масса продукта складывается из молекулярных масс прореагировавших олигомеров и зависит от их мольного соотношения.

Данный способ более дорог, чем способ удаление реакционной воды азеотропным способом, но в случае примене-ния специфических добавок, нейтрализующих или удаляющих нежелательные примеси и побочные продукты синтеза [55], можно получить высокочистый полимер без остаточных металлов, катализаторов и низкомолекулярных фракций.

Существует ещё один способ получения ПМК (III) — лактидный согласно которому, из предварительно синтезированного и очищенного олигомера с Mw=1÷5 кДа путем деполимеризации при пониженном давлении получают циклический лактид. Затем этот лактид подвергают полимеризации, в результате которой цикл лактида раскрывается и получается высокомолекулярная полимолочная кислота. Полимеризация лактидного цикла может протекать как по катионному, так и по анионному механизму [55]. Катионную циклополимеризацию обычно проводят при катализе сульфокислотами [55] или тетрафенилоловом [59, 60, 64-66], а анионную – при катализе алкоксидами [55]. В качестве агента, контролирующего молекулярную массу полимера, можно использовать лауриловый спирт.

В настоящее время лактидный способ синтеза является единственным промышленным способом, позволяющим получать чистую высокомолекулярную (Mw>300 кДа) полимолочную кислоту [55], тогда как молекулярная масса продукта прямой поликонденсации молочной кислоты намного меньше (192,5 против 8,6 кДа для L-PLA и 245,5 против 8,5 кДа для D,L-PLA [68]). В связи с этим некоторые исследователи (например, [32]) различают собственно полимолочную кислоту (низкомолекулярный продукт поликонденсации собственно моочной кислоты) и полилактид (высокомолекулярный продукт полимеризации циклического лактида), однако широко такая терминология не принята.

Первое промышленное производство полилактидных волокон создано в

США, его мощность составляет 140 тыс. т в год; объявлено о его увеличении до 500 тыс. т в год. Ряд фирм Германии, Южной Кореи и других стран создали крупные опытно-промышленные производства для последующего создания многотоннажных предприятий. В число компаний, занимающихся разработкой технологии биополимеров, входят американские «»Du Pont» и «Metabolix», итальянская 146 «Nonvomont», германская «BASF», английская «Monsanto», японские «Mitsui Chemicals» и «Shimadzu».

Достоинством полилактида (ПМК) явл-ся то, что он представляет собой прозрачный, бесцветный термопластичный пол-ер, кот. может быть переработан всеми способами, применяемыми для перераб-ки термопластов. Из листов можно термоформовать подносы, тарелки, получать плёнки, волокно, уп-ку для пищевых продуктов, имплантанты для медицины. При соответствующей пластификации полилактид становится эластичным и имитирует ПЭ, ПП или пластиф-ный ПВХ. Покрытия и плёнки отличаются высокой прочностью, прозрачностью, блеском, приемлемой темп-рой экструзии более 200°С, имеют низкий коэф. трения. Плёнка хорошо сваривается и при этом может биоразлагаться при компостировании. Т. ж. на основе ПМК и ее сопол-ров получены пористые мат-лы. Но широкое применение этот пол-ер не получил, т. к. имеет высокую стоимость.

Полимолочная кислота известна в трех изомерных формах: D(–), L(+) и их рацемической смеси (D, L), в зависимости от того, из какого энантиомера (или рацемата) ее синтезировали [70].

Тип изомера определяет многие свойства этого полимера, в частности кристалличность и условия растворения в органических растворителях.

Как молочная кислота, так и лактид, проявляют оптическую активность, то есть существуют в виде двух L- и D- стереоизомеров, являющихся зеркальным отображением друг друга. Варьируя относительное содержание этих форм в полилактиде, можно задавать свойства получаемого полимера, а также получать различные классы полилактидных материалов. Полилактид из 100 % L-лактида (L-ПЛА) имеет высокую степень стереорегулярности, что придает ему кристалличность. Температура стеклования L-ПЛА: 54—58 °C, а равновесная температура плавления чистого кристаллического L-PLA Tm=207 ºС [67, 71-73], а для регулярного рацемического сополимера она достигает 220°С. Однако вследствие наличия примесей, дефектных кристаллов и возможной рацемизации на практике обычно встречается заниженную величину 170-180 ºС [55]. Используя при полимеризации смесь D- и L- форм лактида, получают аморфный полилактид (L,D-ПЛА), температура стеклования которого составляет 50—53 °C, плавление отсутствует, так как нет кристаллической фазы. Самая высокая температура плавления у стереокомплекса, состоящего из чистого L-ПЛА и чистого D-ПЛА. Две цепочки сплетаются, и образующиеся дополнительные взаимодействия между ними ведут к повышению температуры плавления (до 220 °C)

Степень кристалличности L-PLA зависит от соотношения оптически активных мономеров в смеси для синтеза, она, обычно, составляет более 80% [32], Степень кристалличности L-PLA.

Молекулярная масса полимера для получения волокон и пленок составляет 57000-60000, для пластиков она может достигать 90 000, но ограничивается вязкостью расплава. По свойствам и температурным характеристикам полилактид сравнительно близок к полипропилену и поликапроамиду, соответственно технологические процессы получения полилактидных волокон и нитей, а также оборудование для формования близки к процессам и оборудованию для получения полипропиленовых и поликапроамидных волокон и нитей.

Хорошими пластификаторами для ПМК явл-ся монолаурат полиэтиленгликоля, полиэтиленгликоль, олигомолочная к-та, цитраты. Для снижения хрупкости могут изготавливаться сопол-ры и композиты на основе ПМК (напр., сопол-ер с гликолевой к-той, гликолевой к-той и лизином и т. д.).

Деструкция PLA с определенной молекулярной массой и кристалличностью определяется в основном условиями среды. Рассмотрим некоторые из них:

· рН среды: по данным Макино (Makino) и др. [103], в основной среде гидролиз L-PLA протекает заметно быстрее, чем в кислой. Интересно, что при рН, близких к нейтральной среде, наблюдается тенденция к возрастанию молекулярной массы полимера, причем его молекулярно-массовое распределение (соотношение количеств молекул различной длины (массы) в данном образце полимера. Одна из важнейших характеристик синтетических полимеров, определяющая многие их свойства, в частности механическую прочность) резко расширяется. Это объясняется тем, что деструкция низкомолекулярных фракций протекает быстрее, т.к. мономерные продукты гидролиза растворяются легче. Таким образом, из полимера удаляются низкомолекулярные фракции, а среднюю молекулярную массу начинают определять оставшиеся высокомолекулярные, что и обуславливает ее кажущееся увеличение. Макино и др. [103] отмечают, что после достаточного выдерживания в гидролитически активной среде (20 дней) L-PLA вообще приобретает бимодальное молекулярно-массовое распределение, причем второй пик появляется как раз в области высоких молекулярных масс.

• ионная сила раствора: (Ионная сила раствора — мера интенсивности электрического поля, создаваемого ионами в растворе. Полусумма произведений из концентрации всех ионов в растворе на квадрат их заряда. Формула впервые была выведена Льюисом)

согласно [103] ионная сила раствора не оказывает заметного влияния на молекулярную массу L-PLA в широком диапазоне рН

(от 1,2 до 9,8). На молекулярно-массовое распределение в кислой и нейтральной средах ионная сила раствора также практически не влияет, однако при рН 9,8 картина меняется: в этих условиях с увеличением ионной силы раствора молекулярно-массовое распределение L-PLA становится шире. Другими словами, с повышением ионной силы раствора в основной среде возрастает скорость образования деструктировавших фракций с промежуточной молекулярной массой, которые пока не растворимы в среде. Макино и др. [103] объясняют этот эффект тем, что на поверхности микрочастиц PLA адсорбированы промежуточные продукты деструкции, содержащие карбоксильные группы. Увеличение ионной силы раствора способствует переходу карбоксильных групп в растворимую форму карбоксилат-иона COO¯, что облегчает деструкцию. Поскольку, как было отмечено выше, в первую очередь деструктируют более низкомолекулярные фракции, молекулярно-массовое распределение нерастворенного полимера становится более широким. Таким образом, на ранних стадиях деструкции гидролиз L-PLA начинается именно в поверхностных слоях, что создает отрицательные заряды на ней (образуются карбоксильные группы). На более поздних стадиях деструктировавшие фрагменты переходят в раствор, и заряд поверхности становится менееотрицательным [104].

концентрация буферного раствора: по данным Макино и др. [103], с увеличением концентрации буферного раствора скорость деструкции L-PLA увеличивается, даже несмотря на одинаковую ионную силу. Это происходит потому, что в присутствии буфера продукты деструкции переходят в солевую форму и облегчают дальнейший гидролиз.

Определенное влияние на деструкцию PLA может оказывать активное лекарственное вещество. Из-вестно [17], что некоторые лекарственные препараты-амины катализируют гидролиз основной цепи полимолочной кислоты: так, в ряду прометазин

Дата добавления: 2018-04-05 ; просмотров: 1144 ; ЗАКАЗАТЬ РАБОТУ

источник